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EXECUTIVE SUMMARY 

An East Coast Data Assimilation (ECDA) model based on the two-dimensional Princeton Ocean 
Model (POM) with orthogonal curvilinear grid has been developed. The primary objective ofECDA 
is to simulate water levels along the east coast and provide optimal open boundary conditions for the 
regional and estuarine nowcast/forecast systems. In ECDA, cost function is defined with differences 
between the simulated water levels and observations along the coastal water level gauge stations. 
Elevations along the open ocean boundary and surface wind drag coefficients are chosen as the 
control variables. An adjoint approach is used to calculate the gradient of the cost function. The 
limited memory Broyden-Fletcher-Goldfarb-Shannon(BFGS) quasi-Newton method is then used to 
minimize the cost function. The tidal open boundary conditions are determined by assimilating tidal 
predictions at the coastal stations. The wind drag coefficients are estimated by assimilating either 
observed subtidal water levels or total water levels at coastal stations. The Eta Data Assimilation 
(EDAS) analyzed surface winds are used in nowcast model runs and Eta wind forecasts are used in 
forecast model runs. 

The results for the following experiments are presented: 

Identical Twin Experiments: 
In the identical twin experiment, the pseudo-observations were generated by the numerical model 
with a set of predetermined control variables. The twin experiments of recovering the "true" tidal 
boundary conditions and the "true" wind drag coefficients were performed, respectively. The results 
show that the pseudo "true" tidal open boundary conditions and the pseudo "true" wind drag 
coefficients can be successfully recovered by this system through assimilating water level 
observations along the coast. The water level observational errors inhibit the optimal control 
variables from converging to their true solution. The number and spatial distribution of the 
observations also affect the results of optimization process. The optimal tidal open boundary 
conditions can be determined by assimilating water levels from 9 coastal stations. 

Optimal Tidal Open Boundary Conditions: 
Elevations of 5 major tidal constituents {M27 S2 , N2 , K 1, 0 1) along the open boundary are estimated 
by assimilating tidal predictions from 9 coastal stations with individual and combined methods. 
Similar results were obtained from the two methods but the combined method is more efficient than 
the individual method. Using data assimilation to compute the optimal tidal forcing along the 
boundary led to better results than using the tidal open boundary conditions from Schwiderski's 
global model. For this case, RMS errors at coastal stations are less than 5 em. 

Subtidal Water Level Nowcasts: 
Subtidal water level nowcast experiments with one, eight, and sixteen control variables of the wind 
drag coefficients (Cd) and with/without penalty terms were performed in which surface wind drag 
coefficients were computed by assimilating observed subtidal water levels. The results showed that 
the simulated subtidal water levels were improved even with one control variable. The most 
accurate simulated subtidal water levels were obtained with 16 control variables (using x- andy-
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direction pairs in 8 regions). In this case, the correlation coefficients at 18 stations were greater than 
0.93, and the RMS errors were less than 5.3 em. Both the magnitude and direction of the wind 
stress need to be adjusted in order to minimize the cost function. Penalty terms should also be 
included in the cost function to assure the smoothness of the estimated optimal wind drag coefficient 
in space and time. Results from the experiments with the penalty terms indicate that the estimated 
optimal values of Cd are smoother in space and time than those without the penalty terms. However, 
the RMS error differences between the simulated subtidal water levels with and without the penalty 
terms are very small. Thus, adding the penalty terms leads to smoother solutions that still preserve 
the physical features of subtidal water levels. 

Subtidal Water Level Forecasts: 
Followed subtidal water level nowcast experiments, subtidal water level forecasts are performed 
from the initial file generated from nowcast model to examine model performance of subtidal water 
level forecasts. The following five subtidal water level forecast experiments were performed: 

SWL_Fl: 
No data assimilation was included in the nowcast mode. The wind drag coefficients for both the 
nowcast and forecast modes were calculated with the Large-Pond formulation (denoted as the 
baseline run or without data assimilation case). 

SWL_F2: 
A 24-hour water level data assimilation with 16 control variables and without penalty terms was 
performed in the nowcast mode to obtain optimal values of Cd. The wind drag coefficients are 
calculated with the Large and Pond formulation in the forecast mode. 

SWL_F3: 
Same experiment as SWL_F2 was performed in the nowcast mode, but the optimal values of Cd from 
the previous day's nowcast were applied to the next day's forecast. 

SWL_F4: 
A 24-hour water level data assimilation with 16 control variables and penalty terms was performed 
in the nowcast mode, and the wind drag coefficients are calculated with the Large and Pond 
formulation in the forecast mode. 

SWL_FS: 
Same experiment as SWL_F4 was performed in the nowcast mode, but the optimal values of C d from 
the previous day's nowcast were applied to the next day's forecast. 

The results demonstrated that most of the improvement in water level forecasts by applying water 
level data assimilation into the nowcast/forecast system occurred within the first 6 hours. The 
optimal values of Cd from the previous day's water level data assimilation cannot be directly applied 
in the next day's water level forecast due to changes in the surface wind field. These values can only 
be reasonably extended about 3-6 hours into the forecast. 

X 



Total Water Level Forecasts: 
In practice, total water levels which include both astronomical tides and subtidal water levels can 
be directly measured by water level gauges. Total water levels are important and have direct impacts 
on the activities of people. Our ultimate goal is therefore to produce total water level forecast 
guidance. The following three experiments were performed to compute total water level forecasts: 

TWL_Fl: 
The nowcast and forecast runs were forced along the open boundary with the optimal harmonic 
constants of M 2 , S2, N2 , K1, and 0 1 obtained from the data assimilation. The nowcast run was forced 
with EDAS surface winds and the forecast run was forced with ETA wind forecasts. The wind drag 
coefficients for both nowcast and forecast runs were calculated with the Large and Pond formulation. 

TWL_F2: 
The same tidal open boundary conditions as TWL_F1 were used to force both the nowcast and 
forecast runs. The nowcast run was forced by EDAS surface winds with the optimal wind drag 
coefficients obtained through the water level data assimilation. The forecast run was forced by ETA 
wind forecasts with wind drag coefficients calculated with the Large and Pond formulation. 

TWL_F3: 
At coastal stations, astronomical tides were calculated using harmonic tidal prediction and subtidal 
water level forecasts were obtained from experiment SWL_F4. Total water level forecasts were then 
derived by simply superimposing the simulated subtidal water level forecasts to the tidal predictions. 

For total water level forecasts, the best results were obtained from TWL_F3 that simply adds the 
tidal predictions to the optimal simulated subtidal water levels. The average RMS errors of 24-hour 
water level forecasts over 18 stations vary from 10-16 em, and the average correlation coefficients 
are greater than 0.96. However, such forecasts can only be made where observations are available. 
For the model forecasted total water levels (TWL_F2). The average RMS errors of the 24-hour 
forecasts are in the range of 12-22 em, and the average correlation coefficients are greater than 0.94. 
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1. INTRODUCTION 

Information of water levels and currents plays an important role in coastal management, exploitation and 
navigation (for example, maritime traffic, response to oil spills, fisheries, tourism, recreational sports). Two 
factors generally affect water level variation. The first factor is astronomical tides, produced by the 
gravitational attraction of the moon and sun acting upon the rotating earth. The second is non tidal water 
level variation which is primarily generated by the surface wind, but which also includes the effects of 
changing atmospheric pressure and changing water density (due to temperature and salinity variation). 
Astronomical tides can be predicted using either harmonic or response techniques. For over a century, 
mariners who needed information on water levels and currents have relied on astronomical tide and tidal 
current prediction tables. However, tide and tidal current prediction can not tell mariners what real water 
levels and currents will be in the future since they do not include the often important effects of wind, river 
flow, atmospheric pressure, or water density which sometimes may be significant and completely 
overwhelm the tidal signal. Real-time observing systems provide instant measured water level and current 
measurements and thus are more accurate than tidal predictions, but such information can not be extended 
into the future nor given at locations other than those that are instrumented. 

Numerical models have been widely applied to simulations of ocean coastal circulation. Several ocean 
nowcast/forecast systems have been developed: Coastal Ocean Forecast System (Aikman et al., 1996); 
Experimental Real-Time North Pacific Ocean Now cast/Forecast System (Kuo, personal communication); 
Chesapeake Bay Operational Forecast System (Gross et al., 2000); Lower Columbia River 
Nowcast/Forecast Systems (Baptista et al., 1998). Some N owcast/Forecast estuary systems are under 
development and are running under experimental mode in Coast Survey Development Laboratory, National 
Ocean Service (Parker, 1998; Wei and Chen, 2001; Schmalz, 2000). These systemsnotonlyprovide 
water level and current information at particular locations, but they also provide two-dimensional water 
level fields, and/or three-dimensional current fields. Numerical modeling can also help to understand the 
oceanographic physical dynamics of some special phenomena. However, even the highest resolution 
ocean circulation model cannot resolve all of the dynamically important physical processes in the ocean. 
There are always some processes that are not represented directly (Malanotte-Rizzoli and Tziperman, 
1996), but rather are parameterized. These tunable parameterizations are always uncertain both in form 
and magnitude (i.e. eddy coefficients, wind drag coefficients, bottom friction coefficients, etc.). Many of 
the tunable parameters are often difficult to be directly measured or theoretically defined. Open boundary 
conditions play an important role in the accuracy of a regional tidal model. Solutions in the interior of the 
domain are uniquely determined by the open boundary conditions. Traditionally, tidal open boundary 
conditions can be obtained from either available observations near the open boundaries (tidal gauge data 
or satellite data) or from large-scale numerical models such as Schwiderski' s global tidal model 
(Schwiderski, 1980) and TPX0.3 global tide model (Egbert et al., 1994 ). Unfortunately, the observations 
at open waters are often scarce, and global tidal model results are less accurate in shallow waters. 
Therefore, determination of the open boundary conditions can be the limiting factor in developing a regional 
tidal simulation. However, oceanographic data in the interior of the domain can be used to help estimate 
the tunable model parameters and boundary conditions. Combination of numerical model and observations 
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for determination of the poorly known model parameters and for improvement of the ocean model 
performance can be formulated as an optimization problem. Such an optimization would search for a set 
of model parameters and for an optimal ocean state which together satisfy the model equations and fit the 
available data as well as possible. This may be done by formulating a cost function, which represents the 
differences between the model results and the observations. The cost function is then minimized with model 
governing equations as strong or weak constraints by adjusting the control variables using unconstrained 
optimization algorithms. These algorithms, such as the conjugate gradient method and the limited memory 
quasi-Newton method, require the gradients of the cost function with respect to the control variables. For 
a large number of control variables, computation of the gradients is computationally expensive and therefore 
needs to be carried out using efficient methods. 

Adjoint technique provides an efficient method for gradient computation of the cost function. In recent 
years, the adjoint technique has been developed and widely applied in meteorological and oceanographic 
fields, especially for data assimilation, model tuning, model sensitivity analysis, and parameter estimation. 
As early as the 1970's, the adjoint approach with the governing equations as strong constraints was 
described by Sasaki ( 1970), who gave a framework that is readily applicable to a set of steady or unsteady 
state equations. Bennett and Mcintosh ( 1982) and Bennett ( 1985) used the adjoint variational method to 
determine the open boundary conditions in tidal model and array design. Hallet al. ( 1982) and Cacuci 
( 1988) used the adjoint method to estimate sensitivity of model forecasts to changes in boundary conditions 
and model parameters. Zou et al. (1993) examined the sensitivity of a blocking index in a two-layer 
primitive equation isentropic spectral model. Yu and O'Brien ( 1991, 1992) used the adjoint method in a 
one-dimensional vertical model to estimate the wind stress drag coefficient, the oceanic eddy viscosity 
profile, and initial conditions from observed velocity observations. Panchang and O'Brien ( 1989) applied 
the adjoint variational method to a one- dimensional hydraulic model to determine the bottom friction 
coefficients in a tidal river. Das and Lardner (1991) andLardner(1993) implemented the adjoint method 
for a two-dimensional tidal model to determine the bottom friction coefficients, water depths and open 
boundary conditions from periodic tidal data. Similarly, Lardner et al. (1993) estimated the bottom drag 
coefficient and bathymetry correction for a two-dimensional tidal model of the Arabian Gulf. Lardner and 
Song ( 1995) used the adjoint method in the optimal estimation of viscosity and friction coefficients for a 
quasi-three dimensional numerical tidal model. Seiler ( 1993) used the adjoint method to estimate open 
boundary conditions for a quasi-geostrophic ocean model. These studies using the adjoint technique are 
mainly concerned with examining the method rather than applying it to operational nowcast/forecast system. 

In this study, we describe the East Coast Data Assimilation (ECDA) model which has been developed 
using the adjoint technique with the two-dimensional Princeton Ocean Model (POM). The primary object 
ofECDA is to simulate water levels along the east coast and provide optimal open boundary conditions 
for the regional and estuarine nowcast/forecast systems. In ECDA model, an orthogonal curvilinear model 
grid system is implemented. Elevations along the open ocean boundary and surface wind drag coefficients 
are chosen as the control variables. An adjoint approach is used to calculate the gradient of the cost 
function, and a limited memory Broyden-Fletcher-Goldfarb-Shannon(BFGS) quasi-Newton method is then 
implemented to minimize the cost function. The tidal open boundary conditions are determined by 
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assimilating tidal predictions at the coastal tide stations and wind drag coefficients are estimated by 
assimilating observed subtidal water level data at coastal tide stations. 

Section 2 describes the two-dimensional POM, the model grid, and bathymetry. Derivation of the discrete 
adjoint equations for the two-dimensional POM is described in Section 3. In order to verify and evaluate 
the adjoint model, identical twin experiments are conducted in Section 4. The practical application of 
ECDA to water level data along the East Coast is described in Section 5. 
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2. FORWARD MODEL 

The barotropic two-dimensional POM (Blumberg and Mellor, 1987; Mellor, 1996) is used to make 
the operational real-time water level nowcast/forecast system as efficient as possible since optimal 
adjoint data assimilation requires substantial computer resources to perform numerical computation. 
A 120x85 curvilinear grid (Figure 2.1) is used, with grid sizes ranging from 5 km in shallow regions 
to 32 km in deep regions. The discrete continuity and momentum equations are as follows, 

hn h-n-1 0 (A un-1 A un-1 B yn-1 B yn-1 ) 0 
i,j - i,j + i,j i+1,j i+1,j - i,j i,j + i,jt1 i,jtl - i,j i,j = 

u,:1 - lf,~1- 1 
t L,,1F,,,1 - d1 [.t;,1 H,)V,~}1 + V,~1~\)+ fi-I,JHi-I)V,~~.~+1 + V,~~.~)] 

+Q,A(l- 2a)(h,:j1- h,~~~j)+ a(h,:j -1(1.} t Ji,~j-1 - h,~~.~- pa;.j + pa;-1.})] 

+ JL<-w-•cd,,Jiw,;,jlw.~.j + cb,,j~u,~-12 + v,.~-12 u,~j-1) = o 

n -n-1 Ri,j [ ( n-1 n-1 ) ( n-1 n-1 )] v,.j- V,,j + M,.1F,,.1 + 4 .t;,1H,.1 u,.1 + u,.1.1 + !,,1-IH,.1_1 u,.~,1-l + u,.1-1 

tS,A(l- 2a)(h,:j1- h,:]~ 1 )+ a(h,:1 - h,:1_1 + h,~1- 1 - h,~1-_\- P.;,J + P";1_1)] 

+R,,1 (-10_.Cd,.1 lw,~1 lw,~1 + c.,.1 ~u,:/ + v..:-12 V..:- 1
) = o 

Ji.n · = hfl-:-1 + 0.5 · fJ· (hfl · + Ji.n-:-1 - 2hfl-:-1) I,] 1,] 1,] 1,] 1,] 

'·= '' + ' ' '·+ '' - '' U-n un-1 05 fJ (un u-n-1 2un-1) 
1,) 1,] 1,) 1,] 1,) 

v.. =V.. + .. v .. +v .. - v .. -n n-1 05 fJ ( n -n-1 2 n-1) 
1,) 1,) 1,] 1,] 1,] 

where 

F,,,1 = FI,,/•Y,,j - F;,_l.jtJ.y,_l.j + (F2i.j+l - F3i.}+l )tJ.x,,j+l - CF2,,1 - F3,)tJ.x,,J 

ARU;,j [ ( n-1 n-1) ( n-1 n-1 )] 
- --4- F6,,1H,J V,,J+1 + V;J + F6;-1,1H;-1.1 V,_t.j+t + V;-t,J 

Fy .. = Fs .. tJ.x,J.- Fs· ·-ttJ.x,J._I + (F4. I.- F3. IJ)I!J.y,+IJ- (F4.J- F3.J)I!J.y,J 
l,J 1,) • 1,) • I+,J 1+, • I, I, • 

ARVi,j [ ( n-1 n-1) ( n-1 n-1 )] + - 4- F6,,1H,.j u,.l,j + u,,j + F6i,j-IH,,j-l u,.l,j-1 + ui,j-1 

[J•-1 - [J•-1 
l [ H )U"-1 (H H )U"-1](u•-t u•-t) 2H A i+t,J '·1 

F11.1 = 8 (H,+I.J + ;,J i+I.J + 1.1 + i-I,J ;,J i+I,J + 1,1 - 1,1 M I!J.x . . 

F2,,1 = M<H,,j + H,,1-I)V;~1- 1 + (H,_I.} + H,_I.}-I)V;~~.~](u,~j 1 + u,~)~~) 
u.·~1 _ u.·~~ v·.-1 _ v·-1 

F = ll .. A ( I,J I,J-1 + I,J •-1,]) 
3i,j I,J M !!J.yi,j !!J.xi,j 

F4. =_!.[(H .. + H._t .)u.·~t +(H. ·-t + H._t ·-1)u.•J-~t](v.:-tl + v.•J-t) 
1,} 8 1,) I ,) 1,) 1,) I ,) I, I ,) I, 

I,J 

v·-1- v·-1 
l [ H )V"-1 (H H )V"-1](v•-t v•-t) 2H A i,J+t '·1 

FSi,j = 8 (Hi,j+l + i,j i,j+l + i,j + i,j-1 i,j i,j+l + i,j - i,j M I!J.y . . 
I,J 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

i and j are the horizontal grid index, and n is the index of integration time. h, U and V are the surface 
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elevation and horizontal velocities, f is the Coriolis parameter, a and ~ are temporal smoothing 
parameters, His the water depth at rest, Cb is the coefficient of bottom friction and Cd is the wind 
drag coefficient. Ws is the surface wind speed, and Wu and Wv are the wind components in i and j 
direction. Pa is surface atmospheric pressure. The other coefficients are defined as: 

H, 1 + H,_,. !l.y .. + !l.y_,. d H . + H . !lX + !lX A = . ., . '·' I ., an B = '·' ,,,_, . 1.1 ,,_, 

I,} 2 2 /,] 2 2 

0 . . -- 2!1t 4& 4g&A; . 
R . = and Q· . = ·~ 

'·1 AR~.j '·1 
H;.j + Hi-l,j '·' ARUi,j( Hi,j + Hi-1,j) 

R- . = 4& and S· . = 4g!1tB;,~ 
l,J H;,j + H;,j-1 l,J ARV;.A H;,j + H;,j-1) 

Q.j s.. 4 =-'· , M .. =-~_.} 
,] gAi,J 1,] gBi,J 

H . . = Hi,} + Hi-l,j + Hi,j-1 + Hi-l,j-1 
1,] 4 

A -AMi,}+ AMi-l,j + AMi,j-1 + AMH,j-1 
Mi,j- 4 

/1x. + f1x I + f1x . I + f1x I . I M . . = ,,) ,_ .1 •• 1- ,_ .)-

1,} 4 

/1y . . + f1y. I . + /1y . . I + f1y I . I l:l.- - 1,) ,_ ,) 1,}- ,_ ,J-
Yi,j-

4 
where At is the model time step, and Ax and Ay are the model grid spacings, and g is the acceleration 
due to gravity. ART, ARU, andARV are the area of a grid cell centered at a depth point, aU velocity 
point and a V velocity point, respectively. The open lateral boundary conditions are specified as, 
in subtidal simulation model, 

(2.7) 

in tidal simulation model for one tidal constituent, 

(2.8) 

in which, i is grid index along the open boundary, 'Xi is node factor, A; is mean amplitude, 8; is epoch, 
m is angular speed and E; is value of equilibrium argument when t=O. Velocities are specified using 
a radiation open boundary formulation as, 

v;~l = -0.1~: (h;~;l- h;~l). v;~2 = v;~l 
1,2 

(2.9) 

(v·-l-v·-l )11t u." =u.•-1_ 1.2 1-1.2 (u~-~-u~-~) 
1,1 I, I /1yi,l + !1yi,2 1,2 1,1 

(2.10) 

Figure 2.2 shows the bathymetry and tidal gauge locations which name are listed in Table 2.1. The 
bathymetry in the model domain is based on DBDB5(National Geophysical Data Center, 1985) 5 
arcrninute bathymetry data except in coastal regions (water depth less than 200m) where the NOS 15 
15 arcsecond (National Geophysical Data Center, 1988) bathymetry data is used because of better 
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resolution and accuracy of bottom topography and coastal geometry. The model is driven by surface 
atmospheric pressure and ETA Data Assimilation System (EDAS) analyzed surface wind fields 
(Black, 1994; Rogers et al., 1995) that are bilinearly interpolated onto the model grid. 

Table 2.1. The tidal gauge stations used in this study. The station number is used to identify the 
stations in Figure 2.2. 

Station # Station Name 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Newport, RI 
New London, CT 
Bridgeport, CT 
Montauk, NY 
Willets Point, NY 
Sandy Hook, NJ 
Atlantic City, NJ 
Cape May, NJ 
Lewes, DE 
Gloucester, VA 
Chesapeake Bay Bridge Tunnel (CBBT), VA 
Duck, NC 
Cape Hatteras 
Springmaid, SC 
Charleston, SC 
Mayport, FL 
St. Augustine, FL 
Trident Pier, FL 

7 

Latitude Longitude 

41.51 
41.36 
41.17 
41.05 
40.79 
40.47 
39.35 
38.97 
38.78 
37.25 
36.97 
36.18 
35.22 
33.66 
32.78 
30.39 
29.86 
28.42 

-71.33 
-72.09 
-73.18 
-71.96 
-73.78 
-74.00 
-74.42 
-74.96 
-75.13 
-76.50 
-76.11 
-75.75 
-75.63 
-78.92 
-79.93 
-81.43 
-81.26 
-80.59 



30°N 

25°N~~~_w~~~~~~~~~L-~~~~~~L-~~~~~ 

B5°W B0°W 75°W 70°W 650W 600W 55 0W 

Figure 2.1. Model grid, and eight subregions for surface wind drag coefficients distribution. I and 
J are the grid indices in the X andY directions, respectively. 
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Newport, CT 

2 New London, CT 

3 Bridgeport, CT 

4 Montauk, NY 

0~ 

:.G~ 
:0: 

... : ... ~---·····,·············· 
~ .. I 

5 Kings Pt., NJ 

Sandy Hook, NJ 

7 Atlantic City, NJ 

OB Cape May, NJ 

09 Lewes, DE 

10 Gloucester, VA 

\Z II CBBT, VA 

12 Duck, NC 

13 Cape Hatteras, NC 

14 Springmaid Pier, SC 

30°N 15 Charleston, SC 

16 Mayport, FL 

• NOS TIDE GAUi:;E LOCATIONS 
17 St. Augustine, FL 

. . IB Trident, FL 

ao·w 75•w ?o·w 65•w 6o•w 55•w 

Figure 2.2. Bathymetry in the model domain (in meters) and selected tide gauge locations from the 
National Water Level Observation Network (NWLON). The station names are listed at right side. 
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3. ADJOINT MODEL 

3.1. Control Variables 

For the tidal simulation in the ECDA model, first of all, elevations along the open boundary are 
considered to be control variables and are estimated by assimilating tidal predictions along the coast, 
and the optimal open boundary conditions are used in total water level simulations. And then surface 
wind drag coefficients are considered to be control variables in subtidal and total water level 
nowcast/forecast simulations. 

In tidal simulation model, the elevation values of each tidal constituent along the open boundary can 
be calculated using Eq.2.8 if the tidal harmonic constants at open boundary grid (Ai and ei) are 
determined. In order to reduce the number of the control variable, Ai and ei of each tidal constituent 
are taken as a quadratic polynomials (the shape is based on the results of Schwiderski' s tidal model): 

~=a1 +a2 ·i+a3 ·i 2 (3.1) 

8 i = a4 + a5 • i + a6 • i 2 
(3.2) 

where Ai and ei are the amplitude and the phase of a tidal constituent at open boundary grid, a1 to 
a6 are coefficients of the quadratic polynomials and are used as control variables, i is index of the 
model grid along the open boundary. 

There are 6 control variables for each tidal constituent. Because of the physical nature of these 
control variables, each has different units and magnitudes. Therefore, these parameters are scaled 
so that all control variables have the same order of magnitude during the optimization. This avoids 
ill-conditioning of the Hessian matrix which is mostly used in minimization algorithms such as the 
quasi-Newton method. 

In subtidal simulation model, from sensitivity experiments, we found that the surface wind forcing 
has a predominant effect on the low-frequency nontidal water level variations along the East Coast. 
Therefore, It is assumed that errors in the model-produced nontidal water levels will most likely be 
due to errors in the wind stress field (or to its resolution being too coarse compared with the ocean 
model grid resolution), and that all other parameters are perfect. For convenience we use changes 
in the wind drag coefficients to represent (and correct for) any systematic "errors" in the wind field 
(whatever the cause). Figure 3.1 shows the differences between the observed and EDAS analyzed 
winds (as interpolated EDAS) at Eastport, CBBT, Duck, and Cape Hatteras. It shows that, in 
general, the EDAS winds matched the observed winds in speed and direction reasonably well at 
CBBT, Duck, and Cape Hatteras, yet the match at Eastport was less accurate during this time period. 
However, most EDAS wind speeds are smaller than the observations, and the EDAS directions 
deviate from the observations during the strong wind periods. The wind direction deviation has an 
important impact on the variation of subtidal water levels along the East Coast, which are very 
sensitive to wind direction. Wind observations from a moored buoy 44014 (at 36.58 °N, 74.83 °W), 
which is close to CBBT, were also compared with ED AS-interpolated winds. Most of the EDAS 
wind directions are different from the buoy measured winds, and the observed wind speeds are 
greater than those of EDAS during the strong wind period. In addition to the errors in surface wind 
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fields, it is possible that there could be errors in the wind drag coefficient, whose behavior as wind 
speed increases is still not well understood (especially at high wind speeds). A problem with the 
wind drag coefficient can also occur if the effect of atmospheric stability is not included in its 
formulation, in which case changing air and water temperature could affect wind stress in an 
unaccounted manner. 

The most widely applied wind stress formulation at the sea surface may be conveniently expressed 
in terms of the wind speed ~0 at the 10-meter level, the air density, Pa• and a non-dimensional drag 
coefficient, C d• i. e., 

fs = PaCdl~o~~o (3.3) 
for the formulation developed by Large and Pond (1981), 

3 11.2 0 ~ ~~o~~ 11 rYs 
10 cd = 

0.49 + 0.065~0 11 < ~~ol ~ 25'fs 
(3.4) 

The problem of evaluating the surface wind stress is therefore reduced to estimating the drag 
coefficient, Cd, at different wind speeds if ~0 and Pa are known. Most estimates of Cd have been 
obtained by indirect observations. The dependence of Cd on wind speed has not been completely 
resolved, even for lower wind speeds. Thus, by assimilating the observed subtidal water level into 
the model, it is possible to improve both the wind stress field estimates and the simulated subtidal 
water levels by adjusting the wind drag coefficient Cd. 

Eq.3.4 shows that surface wind drag coefficients vary in both space and time (since wind speed 
varies with time and space). However, due to the limitation of available water level observations 
(number and spatial distribution), the wind drag coefficients are assumed to be constant or piecewise 
constant in the model domain. In this study, the model domain is evenly divided into eight 
subregions along the J-direction (see the thick line in Figure 2.1), and the value of Cd is assumed to 
be constant in each subregion within a data assimilation window. The order of magnitude of Cd is 
about 10·3• For the purpose of convenience and computational accuracy, Cd is scaled by a factor of 
10·3 (i.e., the scaled C/=Cdxl03

). Hereafter, the scaled Cd* is still written as Cd. 

3.2. Cost Function 

The optimal adjoint method attempts to find a set of undetermined parameters (i.e., control 
variables) that minimize the cost function in a least-squares sense over a given period of time (the 
window of data assimilation). Thus, the first task is to define a suitable cost function for a given 
problem. In a general sense, the cost function measures the distances between the observations and 
the numerical model results. With the increasing ability to acquire real-time water level 
observations along the coast, it is feasible to assimilate such real-time data into a numerical model 
to improve water level nowcasts and forecasts. According to Courtier and Talarand (1990), Zou et 
al. (1992) and Lardner et al. (1993), it is necessary to add penalty terms in the cost function 
expression to suppress the high-frequency variations in the state variable simulations and solution 
of the optimal control variables. The cost function is therefore defined as, 
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1 N M 2 1 Nc 1 Nc-l 

J = 2 ~ ~ W;(ht- ha;) + 2r'~, (Cdk- cd:)2 + 2r2 ~~ (Cdk+l- cdk )2 (3.5) 

where h ? and h'! are observed and simulated water levels at nth time step and ith tide station; w,. 
01 I 

is the corresponding weighting factor (taken as 1.0 here) andM is number of observing stations. The 
second and third terms are the penalty terms that measure the variance of the optimal Cd with time 
and space, respectively. Cd and C/ are the new and previous Cd values, Nc is the total control 
variable number of Cd, and y1 and y2 are weighting coefficients which represent the relative influence 
of these penalty terms and are empirically determined. Sensitivity experiments on y1 and y2 showed 
that the better results were obtained from y1 and y2 being 0.001. 

3.3. Discrete Adjoint Equations 

The optimal variational problem is to minimize the cost function J (Eqn. 3.5) subject to the 
governing equations (2.1 )-(2.6). The Lagrangian multipliers.Ah, .Au, Av, A]i, Au, .Ay (also called adjoint 

variables) for the constraint equations (Lawson et al., 1995) are introduced to form an augmented 
Lagrange function. And then applying the variational operator to the augmented Lagrange function, 
the first order variational of the cost function is written as, 

o 1 = f 11 
'f

1

(h1~1 - ho~)s h;~1 + r1f (cdk- cd:)ocdk 
n=2 i=2 j=3 k=l 

N -1 

+ r 2! (zcdk- cdk+1- cdk_Jocdk -r 2 ( cd2- cd1)ocd1 + r 2( cd N, - cd N,-1)ocdN, 
k=2 

N /M-IJM-1,. "{u· u-·-1 L F P..j [ r H (v•-1 v•-1) r H (v•-1 v•-1 )] + ~ .L ~ Aui,Ju i,J - i,J + ;,j xi,} --
4 

J i,J i,J i,J + i,J+I + J i-I,J i-I,J i-l,J+l + i-I,J 
n=2 1=2 J=2 

+ Q1,1 [ (1- 2a)( h,:;1 
- h,~~~1 ) +a( h,:1 - h1~1 . 1 + h,~1- 1 

- Ti,:~~ - Pa,:1 + Pa,~1. 1 )] 

+ P,_1( -I0-6Cd,_1 IW.;.1 1W.~1 + c.,.J~U/1-12 + V..~- 12 U,~1-1 ) } 

N /M-IJM-1,. "{ • -·-I R,.1 [ r H (u·-1 u·-1 ) r H (u•-1 u·-1 )] + ~ I ~ A,,_p V,,j- V..j + M,.}FYI I.+ -4 Ji.; l.j l.j + l+l.j + J i.j-1 i.j-1 i+l.j-1 + i.j-1 
n=2 ••2 )""3 · 

+S,_1[(l- 2a)(h,~71 - h,~7~1 )+ a(h,~1 - h,~1_1 + Ti,:~- 1 -li,~-:1 - Pa,~1 + Pa;1_1)] (3.6) 

+ R,_;< -10 ... cd,_1iW.;,1iw,;,1 + c.,.j ~ u,~/ + v..:-1\.:-l) } 
N lM-IJM-1 

+:L :L :L A.h;,l{ii;~j -h~:1 1 -o.5·/3·(htj +ii;~; 1 -2h;:i 1 )} 
n=2 i=2 j=l 

N IM-1 JM-1 

+ L L L A;;~i8{D;~j - U;~} 1 
- os · /3 · (u~~i + D;:J' - 2U;~j 1 

)} 
n=2 i=2 j=l 

N lM-!JM-l 

+L L LAv~j8{V;.} -Vt1-'-05·P·(vti +V;,}-'-zvti-')} 
n=2 i=2 j=l 
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+ L LA n 8 U." - u.•-1 + 1,2 •-1.2 (U.n-1- u~-1) 
N IM-1 ( M(vn-1 - v•-1 ) ) 

n=
2 

i=
2 

u;,l 1,! 1,! ~Yi,l + ~Y;,2 1,2 1,! 

As previously mentioned, elevations along the open lateral boundary and surface wind drag 
coefficients are the only control variables in the ECDA model. The initial and solid lateral boundary 
conditions are well posed, and therefore, 

8h1
. = 8u~. = 8v~. = 8h.1

. = Ozi1 . = 8V1
. = 0 

1,] 1,] 1,] 1,] 1,] I,] 

8ft"- = 8u
1
"- = 8v

1
n. = 8hn = 8U

1
n = Ov,

1
n. = 0 

I '1,) ,) ,) I '1,) ,) ,) 

8hlnM . = 8ulnM . = 8vlnM . = 8h1Mn . = OulnM . = Ov';M . = 0 ,) ,] ,J ,] ,] ,) (3.7) 

after applying the chain rule and integrating by parts each term on the right hand side of Eq.3.6, 
transforming the summation indices in the terms of 81 that involve the Lagrange multipliers, Eq.3.6 
can be rewritten as, 

N IM-i JM-1 N, 

8 J = L L L (h;~1 - ho7.1 ~ h;~1 + YtL ( cdk- cd: )8cdk n=2 i=2 j=3 k=l 
N -1 

+ r2! (2cdk- cdk+l- cdk-1)8cdk -r2(cd2- cdJ8cdt + r2(cdN,- cdN,-1)8cdN, k=2 

(3.8) 

N-llM-IJM-1 A ~+I p (2fl"2 + V"2) +A Ml R. fJ" V" 
~ ~ ~ c "'·1 1,} 1,} 1,) v,,} 1,) 1,) 1,} 8fJ" 

+ .::_. .::_. .::_. b;,j ~ n 2 n2 1,) 
n=l •=2 J=3 U. . + V . 

1,) 1,} 

related to the bottom friction 

N-llM-IJM-1 A ~~I p iT" V" +A ~+IR. (iT."2 + 2V"2) + ~ ~ ~ Cb. . ur,J r,J I,J 1,} v 1,1 l,J 1,) 1,) §~" 

.::_. .::_. .::_. I,J ~ n 2 n2 ,} 
n=l •=2 J=3 U. j + V 

'· 1,) 

N-llM-1 A n+l p (2iT" 2 + V"2) N-llM-1 A n+l p iT" V" 
~ ~ C u;,2 1,2 1,2 1,2 8U." ~ ~ C u;,2 1,2 1,2 1,2 8V" 

+.::.. .::.. b; 2 ~ 2 2 1,2 + £... .::.. b; 2 ~ 2 2 1,2 
n=l i=2 ' U"

2 
+ V. "

2 
n=l i=2 ' U."

2 
+ V. "

2 I, I, I, I, 

related to the open boundary 

N /M-1 N-llM-1 llt(V" - V" ) 
+ L. L,;. ~ ov" + L. L. ;. ~·~ i.2 i-1.2 8U" 

n=2 i=2 Vt,l l,l n=2 i=2 u,,l dyi,l + ~Yi,2 l,l 

N-1/M-1 llt(V" - V" ) 
+ L L { ;. n -;. ~+I-;. ~+I i,2 i-1.2 }ou" 

n=l i=l ur,l ur,l u1,1 L\yi,l + flY;,z t,l 

N IM-I llt(U" - U") N-IIM llt(U" - U" ) 
~ ~{ , " _ , " , n+t ;,2 i,l }-"V," _ ~ ~;. n+l i+t.z i+l,l oV" 

+ £... £... II,. 2 11,.1 + "u· I A ll U '2 £... £... U'+ll ll ll 1,2 
n=2 i=2 '· '· '· uyi,l + Yi.2 ' n=2 i=l 

1 
' Yi+l,l + Y;t1,2 

+ t/J linearterms + '/'nonlinear terms 
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where tPuneartenns includes all terms related to the linear terms in Eq.3.6, which are summarized in 
Appendix A, and tpnonlinear tenns includes all terms related to the nonlinear horizontal advection and 
diffusion terms in Eq.3.6, 

N IM-IJM-1 N IM-IJM-1 

tpnonlineartenns= ~ ~ ~ L. .A ~.OF .. + ~ ~ ~ M .. A. ~.OF £..i £..i £..i I,J u 1,J x 1,J £..i £..i £..i 1,) vi,J Y; j 
n=2 i=2 j=2 n=2 i=2 j=3 ' 

(3.9) 

which are summarized in Appendix B. Substituting all of the terms of tPuneartenns and tpnonlineartenns into 
Eq.3.8. By organizing the coefficients of each non-control variable(&, OU, bV, ai, 8V, lli) together 

and forcing the coefficients of non-control variables to be zero, the corresponding adjoint discrete 
equations are derived as, 

1 n 1 n+l aQ 1 n+i aQ 1 n+i aS 1 n+i aS 1 n+l 0.5 R1 n+i 0 
.lk-h · · - /h · · + i J./l,u · · - 1"+l J./l.u "+I · + i J./l.v · · - i J"+i/l.v · "+I - '}J.Ik-h · · = 1,) nl,) , 1,) , 1 ,) , 1,) . 1,) 1,) 

1 n+ip ( 2U n 2 V-.2) 1 n+IR U n V-n A . . . . t .. tA ..... . A, n _ A n+l _ 05 ~ n+l C u;,j I,J I,J I,J v;,j I,J I,J I,J F- = O 
Ui,j Ui,j P· Ui,j + bi,j ~u n 2 yn2 + u 

i,j + i,j 

1 n+Ip U n v-· 1 n+IR (U n 2 2v-•2) 
A ·· ·· · .tA · · ·· t · · 

1 n - 1 n+l - 05 R1 n+l C u;,j I,J I,J I,J Vi,j I,J I,J I,J F- = 0 
Av· · Av. · f-lAy. · + b· · ~ + v I,J I,J '·1 '·1 U n 2 V n2 

i,j + i,j 

Ah~.i + Q;,/1- 2a)A..~~1 

- Qi+l_/1- 2a)A..~~~i + Qi,jaAu~.i - Qi+i,jaAu:I.i 

+S;_/1- 2a)A.v~~~ - Si.j+l (1- 2a)...tv;,~:1 + Si,ja...tv;,j - Si.j+la...tv;,j+l 

-A..-h~+I- 0.5{3k.h". + {Jk.h~~~ + w;•J.(h;"J.- hoi•}.) = 0 
1,) f,] l,J • • • 

R.. R.I. 
1 n 0 A 1 n+l 0 A 1 n+l 1·1 f H 1 n+l ,_ ,J f H A n+i 

Au. · t i-1 ]. i j"/l.h·-i ·- i j" i j"Ah. · t -4 i j" i }·Av. · + -4- i-1 j" i-1 }. V"-i . I,) , • I ,) • • I,) • • I,) • • I ,) 

Ri,j+l f 1 n+l Ri-i,j+i f H 1 n+l (1 R\ 1 n+l OjR1 n F 0 
t-4- i,J·H;,J·Av 1·,1·+i+ i-11· i-IJ·.Il.v·-1·1- -PJAu··- PAu··+ u= 4 • • I ,)+ 1,) 1,) 

p. P.I 
A n + 0. . B .A. n+i _ 0. .B .. A. n+i _ __!_:_!_f .. H .. A. n+i _ __!.:..!::_f. . H. . A. n+i 

v;,j I,J-1 1,} h;,j-i I,J I,J h;,j 4 I,J I,J u;,j 4 I,J-1 I,J-I u;,j-1 

p 1"1 pi" 
-~j . . IH.. lA Mil. I-......!!....:.. jl. J.HI. J.A.~+ll.- (1- /f)A.,v~~l- 05{3-Lv". + Fv = 0 4 I,)- I,)- U1+ ,)- 4 • • I+ ,) 1,) 1,) 

where the coefficients of Fu, Fv, Fu, Fv are listed in Appendix C. 

Therefore, the increment of the cost function now becomes, 
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(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 



oJ =-f Ill Ah~28h;"i- f /~-ll~-l 10-6 1W/ ·I(P;JW/JAU~. + R;}WV~ Av~ .)ocd .. 
I, • LJ L.J 1,] • I, l,} • 1,) t,) 1,) 

n=2 i=2 n=2 i=2 j=2 

N N -1 

+ Ytti (cdk- cd:)ocdk + Yz tz (2cdk- cdk+i- cdk-i)ocdk -rz(cdz- cdi)ocdi + rz(cdN,- cdN,-JocdN, 
(3.16) 

The adjoint variables ;..~.1 • Av~.1 • and A;;~.1 are calculated by solvingtheEq.3.10-3.12. Then Eq.3.13-3.15 

are used to solve for the adjoint variables A.u~r A.v;,1 , and A.h;,r The sequence of computing adjoint 

variables in the adjoint model is the reverse of the sequence of computing state variables in the 
forward model. After obtaining the adjoint variables, the gradient of the cost function with respect 
to the control variables can be calculated. In the tidal simulation model (determination of tidal open 
boundary), for each tidal constituent, substitute Eq.2.8, Eq.3.1 and 3.2 into Eq.3.16, and then the 
gradients of the cost function with respect to the open boundary control variables are obtained 

{)j N-l/M-1 

-;- = - L L X;A~2 . cos(w tn + E; - e i) 
ual n=l i=2 

{)j N-IIM-1 

--;--- = - L L X;A~2 . i . cos( w tn + Ei - e i ) 

ua2 n=l i=2 

{)j N-IIM-1 

-;- =-L L X)-~2 ·i2 ·cos(wtn + E;- e i) 
ua3 n=l i=2 

{)j N-IIM-1 

-;-=-I, LX;A;2 • ~·sin(wtn+E;-8;) 
ua4 n=l i=2 

(3.17) 

{)j N-IIM-1 

- = - L L X;A~2. ~. i. sin(wtn + E; - e i) 
das n=l i=2 

{)j N-IIM-1 • 

- = - L L X;A~2 . ~ . i 2 . sin( w tn + E; - e i) 
da6 n=l i=2 

Eq.3.17 can be applied to any tidal constituent (here we consider only M2 , S2, KJ> 0 1, N2). The total 
number of the control variables is determined by how many tidal constituents are used as the open 
boundary forcing. 

In the case that surface wind drag coefficients are the only control variables, if Cd is assumed to be 
constant in the entire domain within a data assimilation window (only one control variable in this 
case), the gradient of the cost function with respect to Cd is 

(3.18) 

For Cd being piecewise constant case, Cd is assumed to be constant in each subregion (as shown in 
Figure 2.1) within a data assimilation window and is considered as a control variable. The gradient 
of the cost function with respect to wind drag coefficients is, 
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(3.19) 

IM 
/ 0 = 1, lk = k*-g• k = 1,2,···,8 

The Eq.3.17-3.19 show that no matter how many control variables there are, the gradient of the cost 
function can be efficiently derived after integrating the adjoint model once. Thus, the adjoint model 
provides an efficient method for calculating gradient of the cost function in optimization process, 
especially for the case of large number of control variables. 

3.4. Optimization and Iteration Scheme 

By forward integrating the forward model and then integrating the adjoint model backward, the cost 
function and its gradient are available. An unconstrained optimization algorithm is needed to 
minimize the cost function, and determine the optimal control variables. For most unconstrained 
optimization algorithms, the gradients of the cost function are required in the iterative process to find 
the optimal direction and to compute the step-size in that direction. The control variables are then 
adjusted in order to minimize the cost function. For a linear model, the number of iterations required 
to reach the minimum of the cost function is theoretically equal to the number of control variables. 
However, the umber of iterations is affected by many factors, such as the number of observations, 
distribution of observations, and the data assimilation window length. Therefore, it is crucial to select 
a robust and efficient optimization algorithm that can provide a fast convergence toward the minimum 
of the cost function. 

Several useful algorithms have been developed based on the descent direction method. There are 
conjugate-gradient methods, Newton and truncated Newton methods, quasi-Newton methods, and 
limited memory quasi-Newton methods. Based on the studies of Gilbert and Lemarechal {1989) and 
Zou et al. (1992), the limited memory quasi-Newton method is a robust and efficient method 
requiring the fewest iterations and storage memory. Thus, in this study, we choose to use the limited 
memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm to perform the 
numerical optimization. The description of this method was given by Liu and Nocedal (1989) and 
Nash and Nocedal (1989). 

The procedure of the iterative optimal data assimilation that is applied to all the following 
experiments is described as: 
i) Forward integrate the forward numerical model for a data assimilation window (T=30 days for the 

tidal open boundary conditions and T=24 hours for the wind drag coefficients) with the initial 
values of the control variables. Save hourly simulated elevations at the corresponding tide 
stations. 
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ii) Calculate data misfits between the model results (h) and the observations (h0 ) at locations where 
data exist and save them into a temporary file. Calculate the value of the cost function with 
Eq.3.5. 

iii) Integrate the adjoint model backward in time from t=Tto t=O, forced by data misfits to calculate 
the adjoint variables Ah,Au,.Av,.Aii ,.Au,.Ay. And then calculate the gradient of the cost function 

with respect to the control variables. 
iv) Use the limited memory BGFS quasi-Newton minimization algorithm to calculate optimal control 

variable estimates. 

v) Check whether the convergence criterion, II Gil < e or J < e ( G is norm of the gradient, J is value 

of the cost function, and e is criterion), for the minimization process is satisfied. If Yes, iteration 
is stopped, and go to step vi. Otherwise, step i to v are repeated with the new values of the 
control variables. 

vi) Integrate the forward numerical model with final optimal values of the control variables. 
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Figure 3.1. Comparison of observed and EDAS surface winds at Eastport, CBBT, Duck and Cape 
Hatteras in October, 1996. Solid arrows, observed winds; open arrows, EDAS analyzed winds. 

19 





4. VERIFICATION OF THE ADJOINT MODEL 

It is important to ensure correctness of the adjoint code and efficiently converging rate of the 
optimization process. Any error in the adjoint model equations can result in wrong gradient of the 
cost function with respect to the control variables. Therefore, the optimization method can fail to 
find a reasonable optimal parameter estimation. Various tools can be used to debug and verify the 
adjoint model equations. The most useful method is to use gradient ofthe cost function to check the 
correctness of the adjoint model equations. This involves perturbing each of the control variables 
by an appropriate small amount and integrating the forward model to calculate the change in the cost 
function with respect to the corresponding control variable. The derivative of the cost function at 
any point of Cd of the parameter space can be calculated by a finite difference (FD) method as 
follows, 

J(Cd + ~Cd)- J(Cd) 
a= ~c (4.1) 

d 

The gradient calculated from an adjoint model should be consistent with that calculated using Eq.4.1 
within the order of L1Cd. 

To verify the performance of the adjoint data assimilation procedure, an identical twin experiment 
is used in which pseudo-observations are generated by the numerical model with predetermined 
control variables. Therefore, the "data" are not contaminated with observational errors and contain 
the same dynamics as the numerical model itself used in the data assimilation procedure. In this 
section, the correctness of the adjoint model equations is verified with Eq.4.1, and the performance 
of the data assimilation system is evaluated by identical twin experiments. The penalty terms in 
Eq.3.5 are not considered in the following identical twin experiments of this section. 

4.1. Test of Gradient of the Cost Function 

Several experiments have been performed to compare the gradient of the cost function calculated 
using Eq.4.1 with that calculated from the adjoint model. Similar results were found in these 
experiments. As an example, results from the experiments of estimating wind drag coefficients are 
presented. The hourly low-pass filtered subtidal water level observations at 18 NOS tide gauge 
stations are used to calculate the values of the cost function and data misfits. These data misfits, 
which measure the distance between the observations and model results, are used to force the adjoint 
model. 

Two experiments were performed, the first using one control variable and the second using eight 
control variables. In the former, the gradients for different values of Cd are presented in Table 4.1. 
It shows that the gradients calculated using the finite difference method and the adjoint method are 
very close in magnitude and are consistent in signs. The maximum gradient difference between the 
two methods is less than 0.0012. This difference is insignificant and reasonable, being approximately 
5% of the gradients calculated. In order to verify the correctness of adjoint model equations for the 
multiple control variables case, the gradients of the cost function for eight control variables are 
similarly calculated using both the finite difference method (with L1 Cd =0.2) and the adjoint method. 
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In this case, C dis defined as a sinusoidal function of time, and there is a one day phase shift between 
each of the 8 control variables. 

Cd(m) = 10.0+ 5.0sin[ :0~(1v + m-1) ], m= 1,-··,8 (4.2) 

where m represents the index of the control variable and lv is the Julian day (the control variables 
remain constant within the 24-hour data assimilation window). The time series ofthe hypothetical 
wind drag coefficients (Eq.4.2) are plotted in Figure 4.1. Note that these hypothetical Cd values are 
also used in the identical twin experiments in the next section. The gradients of the cost function 
for consecutive 30-day period are presented in Figure 4.2. It can be seen that the gradients using 
both the finite difference method and the adjoint method are in very good agreement. The maximum 
and minimum gradient differences between the two methods during the 30-day period are presented 
in Table 4.2. The maximum difference is 1.33 x 10-3

, for the second gradient component, and the 
maximum difference of the norm of gradients is 1.44 x 1 o-3

. 

Table 4.1 Comparison of the gradients (G) from finite difference method and 
d" . h d . h 1 . bl a lJOmt met o Wlt one contro vana e 

cd L1Cd GofFD G of Adjoint Difference 

0.2 0.002012 0.000095 
3.6 0.001917 

0.02 0.002029 0.000112 

0.002 0.002047 0.000130 

0.2 0.003807 0.000158 
5.0 0.003649 

0.02 0.003803 0.000154 

0.002 0.003894 0.000244 

0.2 0.010225 0.000398 
10.0 0.009827 

0.02 0.010207 0.000380 

0.002 0.01013 0.000303 

0.2 0.01664 0.00078 
15.0 0.01586 

0.02 0.01665 0.00079 

0.002 0.01668 0.00082 

0.2 0.02306 0.00118 
20.0 0.02188 

0.02 0.02302 0.00114 

0.002 0.02295 0.00107 

The above experiments for one and eight control variables show that the gradients calculated using 
the adjoint model are consistent with those calculated using the finite difference method. This 
demonstrates that the adjoint model developed in Section 3 can give the same accurate gradients of 
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the cost function as the finite difference method. However, the adjoint method is more efficient than 
the finite difference method, especially for a large number of control variables. 

Table 4.2. The maximum and minimum gradient differences of the gradient components between 
f . d. f£ th d d th d. . t th d mite 1 erence me 0 an e a lJOm me 0 

Component IGI (norm) G(l) G(2) G(3) G(4) G(S) G(6) G(7) G(8) 

Max. Diff. 1.44x1o·' 1.19x10·' 1.33x10·' 6.23x104 2.87x104 2.12x!04 7.79xl04 1.24xl0·3 2.9Sx104 

Min. Diff. <!0"' 3.0x10"" 2.0x10"" <10"' l.lx1o·' 2.3xiO·' <Io·• <10"' <10"' 

4.2. Identical Twin Experiments 

The verification above indicates that the gradient computed by the adjoint model is very close and 
consistent with that from the finite-difference method. It now remains to determine whether the 
correct optimal control variables can be obtained by the optimization procedure, and how fast the 
iterative optimization converges. Identical twin experiment is the most useful tool to verify and 
evaluate the performance and feasibility of the adjoint data assimilation procedure. In the identical 
twin experiment, the pseudo-observations are generated by the numerical model itself with a set of 
predetermined control variables. Thus, the pseudo-observations are not contaminated by any 
observational errors and contain the same dynamics as the numerical model, and we can sample any 
kind of the pseudo-observation (current and elevation at any grid point and any time step). Another 
merit of the identical twin experiment is that the true values of control variables are already known, 
we therefore can examine whether or not the optimal control variables converge to their true values. 
Thus, identical twin experiment is the best situation for data assimilation and is widely used to 
evaluate and verify the performance of a developed adjoint data assimilation system. In this section, 
twin experiments of recovering the "true" tidal boundary conditions and the "true" wind drag 
coefficients are performed, respectively. 

4.2.1. Recovery of Tidal Boundary Conditions 

In this identical twin experiment, tidal elevations of M2 constituent are specified along the open 
boundary. The coefficients of amplitude and phase, a1-a6 (see Eq. 3.1 and 3.2), are the control 
variables, so the elevations along the open boundary are calculated after determining the control 
variables. The tidal model is integrated with the predetermined values of a1-a6 (called "true" values) 
for at least 60 days (results from the first 30 days are not used in order to eliminate initial 
oscillations). The hourly simulated elevations at 18 NOS tide gauge stations (see Table 2.1) are 
saved and used as pseudo-observations in the data assimilation process. 

A twin experiment was conducted in which initial value of each control variable is obtained by 
subtracting 0.5 from its "true" values. Figure 4.3 shows the values of the cost function (1) and the 
norm of its gradient (G) versus the number of iterations in the optimization process (all values are 
normalized by their own initial values, 10 and G0). We can see that the cost function and the norm 
of the gradient drop rapidly in the first several iterations. The convergence criterion is satisfied after 
43 iterations. The relative value of the cost function (J/10) decreases from 1 to 10-7

• The final value 
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of the norm of the gradient is less than 10·6• The optimal amplitudes and phases of M2 constituent 
along the open boundary (Figure 4.4) converge closely to their true values from the initial values. 
RMS errors between the true and optimal elevations for 30 days along the open boundary are 
presented in Figure 4.5. Although the optimal amplitude and phase are not exactly coincident with 
the true values, the RMS errors are less than 1cm and the correlation coefficients (Cr) are greater 
than 0. 999. Another experiment was conducted in which initial values of the control variables were 
set to be zero in order to test sensitivity of the performance of the optimization procedure to the 
initial values of the control variables. Similar results were obtained, which shows that the 
optimization procedure is independent of the choice for the initial values of the control variables. 
However, the initial guess must be meaningful and ensure the model running reasonably. On the 
other hand, for the efficiency of the optimization process, the initial guess of the control variables 
should be as close to the true solution as possible. 

Table 4.3. Optimal coefficients of the quadratic polynomials (Eq. 3.1 and 3.2) of amplitude and 
Ehase of M, constituent for the twin identical exEeriments 

Experiment al a2 a3 a4 as a6 

True_ value 0.4213 -0.2759 0.2769 0.6688 -0.3929 0.9759 
Initial_ value 0.9213 0.2241 0.7769 1.1688 0.1071 1.4759 
ITE_Sta18 0.4187 -0.2695 0.2764 0.6771 -0.4339 1.4349 
ITE_Sta9 0.4189 -0.2699 0.2767 0.6768 -0.4386 1.4370 
ITE_Sta6 0.4131 -0.2377 0.2446 0.6734 -0.4305 1.4421 
ITE_Sta9 2 0.4096 -0.2160 0.2221 0.6703 -0.4240 1.4430 
ITE_Sta6 - 2 0.4076 -0.2313 0.2453 0.6794 -0.4423 1.4272 

A series of sensitivity experiments in which the number of water level stations was reduced step by 
step have been performed. We began with all 18 stations (denoted as ITE_Sta18), in which the 
pseudo-observations from the 18 stations are assimilated. In the next experiment, the pseudo­
observations from 9 stations selected from ITE_Sta18 along the open coast (stations 
4,6,7,9, 12, 13,15,17 and 18) are assimilated (ITE_Sta9). In the ITE_Sta6 experiment, 6 stations were 
selected from the stations used in experiment ITE_Sta9 (stations 4,6,7,12,13 and 17, respectively). 
The initial value of each control variable was obtained by adding 0.5 to its true value, and the same 
initial values of the control variables were set for all experiments. Values of the optimal control 
variables from these three experiments are listed in Table 4.3, and the optimal harmonic constants 
(amplitude and phase) along the open boundary calculated from these optimal control variables are 
presented in Figure 4.6. We can see that the optimal control variables do not exactly equal the true 
values for the three experiments. The optimal control variables from ITE_Sta9 are very close to 
those of ITE_Sta18 (the difference for each control variable is less than 0.004). The optimal 
amplitudes and phases along the open boundary derived by the optimal control variables from 
ITE_Sta18 and ITE_Sta9 are almost coincident and they are closer to the true values than those from 
ITE_Sta6. Simulated elevations at all of the tide gauge stations from these three experiments are 
close to the pseudo-observations, and RMS errors at 18 stations are all less than 0.1cm. This 
demonstrates that the true open boundary elevations can be recovered by assimilating tidal elevation 
data at coastal stations. 
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It is noticed that the parameter a6 did not converge to its true value from the initial value in each of 
the experiments. The reason is that the "true" phase solution is primarily a linear function of/, and 
the model simulations are thus not sensitive to a6• It makes no sense to try to determine a 
nonsensitive parameter. Therefore, the parameter a6 can be specified as a constant or discarded in 
the data assimilation procedure. In order to investigate the effect of the spatial distribution of the 
assimilated data on the optimization procedure, two other experiments were performed: ITE_Sta9 _2 
and ITE_Sta6_2. In the ITE_Sta9 _2 experiment, data from 9 water level stations inside bays or 
rivers (different from those used in ITE_Sta9) were used in data assimilation. In the ITE_Sta6_2 
experiment, data from 6 stations between Montauk and Lewes (stations 4-9) were assimilated. The 
optimal amplitude and phase at the open boundary are also plotted in Figure 4.6. The optimal 
amplitude and phase along the open boundary from the ITE_Sta9 _2 deviated more from the true 
values than even the ITE_Sta6 results. This shows that the data from inside bays or rivers may 
include some signals which cannot be produced by the open boundary tidal forcing but by the local 
geometry and bathymetry (local tidal dynamics). The true open ocean boundary conditions cannot 
therefore be obtained by assimilating such data. In the ITE_Sta6_2 experiment, the northernmost 
6 stations from ITE_Stal8 are used. The optimal amplitudes and phases along northeast part of the 
open boundary are the closest to the true values among all of these twin experiments. However, 
ITE_Sta6_2 yields the worst results along the southern part of the open boundary. The elevation 
RMS errors for ITE_Sta9_2 and ITE_Sta6_2 at coastal stations are not significantly different from 
those ofiTE_Sta18, ITE_Sta9, and ITE_Sta6. The elevation RMS errors for ITE_Sta6_2 at 18 tidal 
stations are less than 0.5cm. The identical twin experiments show that the true open boundary 
conditions can be recovered by assimilating ideal pseudo-observations from coastal stations. Better 
results are obtained by assimilating data from open coast stations than stations from inside shallow 
bays or rivers. The spatial distribution of the stations also has a significant effect on estimates of the 
optimal open boundary conditions. 

4.2.2. Recovery of Wind Drag Coefficients 

Three kinds of identical twin experiments for recovering wind drag coefficients were performed: one 
with one control variable, one with eight control variables, and one with 16 control variables. Since 
the results from all kinds of experiments are very similar, the results from only the eight control 
variables experiments are presented here. In this kind of experiment, the following runs were 
performed: 

• ITE_ WDCl: one-day data assimilation with pseudo-observations 
• ITE_ WDC2: one-day data assimilation with contaminated pseudo-observations 
• ITE_ WDC3: 30-day continuous data assimilation with pseudo-observations 
• ITE_ WDC4: 30-day continuous data assimilation with contaminated pseudo-observations 

As explained in Section 3.1, the wind drag coefficient is dependent on wind speed and varies both 
spatially and temporally. In finding the optimal values for Cd, we are allowing the "improvement" 
in Cd to represent (and correct for) a systematic error in the wind field, that varies in space and time. 
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However, it is almost impossible to use the wind drag coefficient of each gird point as a control 
variable in the data assimilation procedure because of the limitation of available observations and 
computational cost. In order to assess the performance of the adjoint data assimilation system for 
the multi control variables case, experiments with eight piecewise constant control variables (the 
spatial distribution of Cd in the model domain is shown in Figure 2.1) were designed, in which 
pseudo water levels were generated by integrating the forward model with the hypothetical values 
of Cd of Eq.4.2, and hourly pseudo water levels from 18 tide gauge stations were used in data 
assimilation. The results are described as follows. 

ITE_ WDCl: one-day data assimilation with pseudo-observations 

In this experiment, the initial values for all Cd are set to 20.0. The optimal Cd values determined at 
each iteration are presented in Figure 4.7. It shows that most of the optimal Cd values converge 
toward their true solutions rapidly during the first several iterations, and are very close to their true 
values after approximately 10 iterations. The maximum difference between the true solution and the 
final optimal cd for eight control variables is 1.5xl04 and appeared at the eighth cd component. 
Figure 4.8 shows the variation of the cost function (f) and the norm of its gradient ( \\G\\) versus the 
number of iterations for this experiment. The cost function and the norm of its gradient have been 
normalized by their own initial values ]0 and IIGoll (the values of the cost function and the norm of the 
gradient correspond to the initial values of the control variables) for convenience of comparison. 
It is evident that the cost function and the norm of the gradient drop rapidly in the initial three 
iterations. The convergence criterion IIGII < t: (here E=10-7 of computer accuracy) is satisfied after 

30 iterations. The corresponding values of the cost function and the norm of the gradient are 1.4x 1 o-
11 and 3.2xl0-8

, respectively. 

The impact of the initial values of the control variables on the results of the optimization procedure 
was also tested. The results show that no matter how far the initial guesses are from their true 
solutions, the value of the cost function and the norm of the gradient drop rapidly in the first several 
iterations, and the optimal Cct values are very close to their true solutions after about ten iterations. 
After that, the optimization procedure adjusts the optimal Cct slowly, and all of the eight optimal Cct 
components gradually converge to their true solutions. 

ITE_ WDC2: one-day data assimilation with contaminated pseudo-observations 

In the ITE_ WDC 1 experiment, the pseudo-observations do not contain any observational errors. 
Therefore, the optimal values of Cd efficiently converge to their true solution. However, water level 
observations are always contaminated with errors. In order to assess the effects of observational 
errors on the performance of the data assimilation system, white noise with zero mean and a standard 
deviation of 0.057 m was superimposed on the pseudo-observations used in the ITE_ WDC 1. As an 
example, the contaminated pseudo-observations at Sandy Hook are shown in Figure 4.9. The same 
data assimilation procedure as ITE_ WDC1 was repeated with initial Cd values of 20.0 but the 
contaminated pseudo-observations were assimilated. Figure 4.10 shows the variation of the optimal 
Cd with the number of iterations. It can be seen that the trend for each optimal Cd component is very 
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similar to that of ITE_ WDC 1. However, there is a larger difference between the final optimal value 
and the true solution for each control variable. The maximum difference among the eight 
components is now 0.53 (for the second Cd component). The trends of the cost function and the 
norm of the gradient (shown in Figure 4.11) are also similar to those ofiTE_WDC1, although the 
cost function is much greater than that of ITE_ WDC 1. After about 10 iterations the misfits between 
the model results and the pseudo-observations closely resemble the superimposed white noise signal 
(the misfits at Sandy Hook are shown in Figure 4.12). This indicates that the data misfits between 
the model simulated water levels and pseudo-observations are primarily contributed by the 
superimposed white noise. This experiment indicates that the optimal Cd converges to the true 
solution. However, the true Cd values cannot be exactly recovered since the effects of white noise. 
Thus, the observational noise has an impact on the determination of the optimal wind drag 
coefficients. 

ITE_ WDC3: 30-day continuous data assimilation with pseudo-observations 

This experiment is an extension of ITE_ WDC 1 to a 30-day continuous data assimilation for 
evaluating the performance of the data assimilation system with multiple control variables which 
vary in time and space. The initial guesses of the eight Cd components for the first day were again 
given as values of 20.0. The forward model was integrated from rest, and the restart file at the end 
of each data assimilation window (i.e., 24 hours) was created by model integration with the optimal 
Cd values of that day. The optimal Cd values were then used as the first guesses for the following 
24-hour data assimilation procedure. Differences between the true and the optimal values of Cd are 
shown in Figure 4.13. It can be seen that, in general, the optimal values of Cd are close to their true 
solutions. Most of the differences between the true solution and the optimal values of Cd are less 
than 104

, and the maximum difference is 0.03. The norm of the gradient and the cost function 
during the 30-day assimilation period are presented in Figure 4.14 and Figure 4.15. The norm of the 
gradient and the cost function are small in magnitude, with the maximum values being 4.5 x 10-7 and 
2.6x10-8

, respectively. This experiment demonstrates that the data assimilation system is successful 
in recovering multiple control variables from pseudo water level observations along the coast. 

ITE_ WDC4: 30-day continuous data assimilation with contaminated pseudo-observations 

The same data assimilation procedure as that used in the ITE_ WDC3 experiment were performed, 
but the same contaminated pseudo-observations as that in ITE_ WDC2 experiment were assimilated. 
The comparison between the true solutions and the optimal values of Cdare presented in Figure 4.16. 
In general, each optimal Cd component follows the trend of its true solution. However, on some 
days, the differences between the true solution and the optimal values of Cd are greater than 5.0, 
which are much greater than those of ITE_ WDC3. As shown in Figure 4.17, the norm of the 
gradient is generally less than 104

, but is still much greater than that of ITE_ WDC3 (with the 
exception of the maximum of 2.1x104 occurred on Julian Day 256). Cost function values (shown 
in Figure 4.18) vary in the range from about 0.7 to 0.9 during the 30-day assimilation period. 

This experiment shows that the noise added to the pseudo-observations inhibits the optimal Cd from 

27 



converging to their true solution. The noise ratio (defined as the ratio of the standard deviation of 
noise to that of observation) at the 18 water level stations varies from a maximum of 0.63 at 
Eastport to a minimum of 0.21 at Springmaid Pier. The results of this experiment show that the 
amplitude of the noise added to the pseudo-observations is too large compared with amplitude of the 
pseudo-observations to recover the true Cd solution exactly. In order to demonstrate this, another 
experiment was performed in which noise with zero mean and standard deviation of 0.014m was 
added to the pseudo-observations at all of the 18 stations (the mean noise ratio is about 0.1 ). The 
optimal Cct values for this case are much closer to the true solution than that of ITE_ WDC4, but the 
differences between the true solution and the optimal values of Cd still exist. The maximum values 
of the norm of the gradient and the cost function are 1.7x10-5 and 0.05, respectively. The results 
show that any observational error can cause the optimal Cd not to converge exactly to the true 
solution. The smaller the noise ratio, the closer the optimal Cd is to the true solution. 

4.3. Effects of Spatial Distribution of Observational Stations 

A sensitivity test of the identical twin experiment can be used to demonstrate how the spatial 
distribution of water level stations influences the result of optimization process. In general, any 
perturbation of a control variable should be correctly represented by the change in the cost function. 
In other words, any change of a control variable should result in a change of the water levels which 
are used to compute the cost function. Otherwise, the gradient of the cost function will be zero, and 
the optimization procedure fails to find the meaningful optimal control variables since the 
convergence criterion is already satisfied. Since the selected water level stations (in the ECDA 
model) are all close to the coast, a perturbation of the wind drag coefficients at the area far away 
from the coast may not be reflected in the changes of the water levels at these water level stations 
within the data assimilation window, in other words, the changes of the wind drag coefficients at an 
area far away from water level stations may not result in any water level change at the coastal 
stations. This results in the zero gradient of the cost function, and therefore optimization process 
stops successfully but fails to find meaningful optimal control variables. In this section, three 
experiments were performed to demonstrate the influence of choosing the number and distribution 
of water level stations in the optimization process. According to the control variable definition, the 
model domain was divided into eight regions, and each region is associated with a control variable 
(see Figure 2.1 ). The number of water level stations in each region for these three experiments is 
listed in Table 4.4. 

A 30-day continuous data assimilation identical twin experiment was conducted with eight control 
variables and pseudo-observations from 15 water level stations (denoted as ITE_DOS 1). Note that 
there are no stations in Regions 2 and eight. The optimal values of Cd (shown in Figure 4.19) are 
different from the true solutions on day 250 since the optimization procedure could not find better 
values of Cd than those of day 249. After day 250, the optimal values of Cd in regions 3-7 converge 
to their true solutions again. In Regions 1 and 2, the error of the optimal Cd on day 250 leads to an 
overshoot on day 251, before gradually converging to their true solutions. In Region 8, the optimal 
Cd converges to its true value after 6 days. 
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Table 4.4. Distribution of the water level stations in model domain 

Region! Region2 Region3 Region 4 RegionS Region6 Region? Region8 

ITE_DOS1 5 0 3 1 1 4 1 0 

ITE_DOS2 5 0 5 2 2 4 2 0 

ITE_WDC3 5 0 4 1 1 3 2 2 

ITE_DOS3 pseudo-observation is available at every model grid point. 

For ITE_DOS2 experiment, pseudo-observations from 20 water level stations were used, but there 
are still no stations in Regions 2 and 8. Similar results as ITE_DOS 1 are obtained. The optimal 
values of Cd from the optimization on day 250 are still different from the true solutions. Keep in 
mind that for ITE_ WDC3 of Section 4.2.2 (18 total stations, 2 in Region 8 and none in Region 2), 
the optimal values of Cd converged to their true solutions exactly. This indicates that spatial 
distribution of the water level stations has a significant effect on the results of the optimization. This 
is part of the reason why the wind drag coefficients were defined in this way in the ECDA domain. 

Another experiment (ITE_DOS3) was performed in which the hourly pseudo-observations (water 
level only) from all of the water cell grid points (total 9794) were used in the data assimilation. The 
results from this experiment show that the maximum difference between the true and the optimal 
values of Cd is less than 104 during the 30 day data assimilation period. A comparison of errors of 
the optimal Cd for this experiment with those for ITE_ WDC3 in Section 4.2.2 is shown in Figure 
4.20. Errors are now observed to be close to zero for this experiment, but there appear some larger 
errors for the ITE_ WDC3. A comparison of the cost function for this experiment with that for 
ITE_ WDC3 (shown in Figure 4.21) shows that the cost function has been significantly reduced on 
days 250 and 257 for this experiment. Aside from these two days, values of the cost function from 
the two experiments are the same order of magnitude. Therefore, within a preset accuracy criterion, 
the number of representative observations does not have a significant effect on the cost function. 
So we can use a minimum number of representative observations to obtain similar results with using 
more observations. This is encouraging for designing a reasonable and efficient observation system. 

29 



245 250 255 260 
Time (days) 

265 

~·· 

270 

J 
] 
J 

275 

Figure 4.1. Time series of hypothetical wind drag coefficients for the identical twin experiment with 
eight control variables. 
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Figure 4.2. Time series of the norm of the gradient and the gradient components calculated by both 
the finite difference and adjoint methods. 
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Figure 4.3. Norms of the gradient (solid line) and cost function (dotted line) versus the number of 
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Figure 4.4. Amplitudes and phases along the open boundary in the twin experiment. Solid line, true 
values; dashed line with plus, optimal values; dashed line, initial values. 
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optimal open boundary elevations. 
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Figure 4.6. True and optimal amplitudes and phases at the open boundary from various twin 
experiments. 
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Figure 4.7. Variation of the optimal Cd during a one-day identical twin experiment with eight 
control variables and pseudo-observations. Solid line, optimal values; dashed line, true values. 
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Figure 4.8. Variation of the norm of the gradient 1%.1 and the cost function J/J0 (scaled by their 

initial values IIGoll and J0) with the number of iterations for a one-day identical twin experiment with 
eight control variables and pseudo-observations. Solid line, gradient; dashed line, cost function. 
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Figure 4.9. An example of the original (solid line) and contaminated (dashed line) pseudo­
observations at Sandy Hook. 
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Figure 4.10. Variation of Cd during the iterative process for the one-day identical twin experiment 
with eight control variables and contaminated pseudo-observations. Solid line, optimal values; 
dashed line, true values. 
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Figure 4.11. Variation of the norm of the gradient 1%.1 and the cost function J/J0 (scaled by their 

initial values IIGoll and J0) with the number of iterations for a one-day identical twin experiment with 
eight control variables and contaminated pseudo-observations. Solid line, gradient; dashed line, cost 
function. 
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Figure 4.12. Comparison between the white noise (solid line) and data misfits (dashed line) after 
four iterations at Sandy Hook. 
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Figure 4.13. Time series of the differences between the true solution and the optimal Cd from the 
30-day identical twin experiment of ITE _ WDC3. 
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Figure 4.14. Time series of the norm of the gradient from a 30-day identical twin experiment with 
eight control variables and pseudo-observations (ITE_ WDC3). 
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Figure 4.15. Time series of the cost function from a 30-day identical twin experiment with eight 
control variables and pseudo-observations (ITE _ WDC3 ). 
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Figure 4.16. Time series of the true solution (solid line) and the optimal values (dashed line) of Cd 
from a 30-day identical twin experiment with eight control variables and contaminated pseudo­
observations (ITE_ WDC4). 
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Figure 4.17. Time series of the norm ofthe gradient from a 30-day identical twin experiment with 
eight control variables and contaminated pseudo-observations (ITE_ WDC4). 
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Figure 4.18. Time series of the cost function from a 30-day identical twin experiment with eight 
control variables and contaminated pseudo-observations (ITE_ WDC4). 
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Figure 4.19. Time series of the true values (solid line) and optimal values (dashed line) of Cd from 
a 30-day identical twin experiment with 15 stations (ITE _DOS 1 ). 
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Figure 4.20. Comparison of the errors in the optimal values of Cd. The solid line represents the 
differences between the true and the optimal values of C d from the identical twin experiment in 
which pseudo-observations are available at every grid point inside the model domain (ITE_DOC3). 
The dashed line represents the difference between the true and the optimal values of Cd from the 
identical twin experiment of ITE _ WDC3. 
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Figure 4.21. Time series ofthe cost function from the identical twin experiments ITE_ WDC3 (solid 
line) and ITE _ DOS3 (dashed line). 
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5. PRACTICAL APPLICATION 

5.1. Optimal Estimation of Tidal Open Boundary Conditions 

To understand the importance of each tidal constituent along the U. S. East Coast, the harmonic 
constants for 37 tidal constituents at tide gauge stations along the coast are analyzed. These constants 
were calculated by the Center for Operational Oceanographic Products and Services (CO-OPS) of 
NOAA from long-term water level observations using the least square harmonic analysis method. 
The ratio of the potential energy of each tidal constituent to the total potential energy of all 37 tidal 
constituents is defined as: 

A2 
r - l 

PE --37-- (5.1) 

_LA;2 
i=l 

where A; is amplitude of each tidal constituent. The potential energy ratios of the five major tidal 
constituents (M2, S2, N2, KJ, OJ) at 18 tidal gauge stations are listed in Table 5.1. We can see that 
more than 80% of the potential tidal energy is generally contributed by the M2 constituent, and more 
than 94% potential tidal energy is contributed by the five major tidal constituents. In this section, 
we therefore focus on the open boundary optimization of these five major tidal constituents. 

Table 5.1. Potential energy ratios (expressed as percent) of the major 5 tidal constituents at 18 tidal 
gauge stations 

Sta.# Mz sz Nz KJ OJ J:of5 

1 85.521 4.624 4.929 1. 252 0.795 97.121 
2 82.693 3.200 4.890 3.472 1. 669 95.925 
3 90.081 2.558 4.292 0.769 0.404 98.104 
4 78.474 3.784 5.590 4.773 2.330 94.950 
5 89.663 2.691 4.339 0.666 0.318 97.677 
6 87.445 3.417 4.488 2.007 0.531 97.889 
7 85.499 3.352 4.639 2.969 1. 403 97.863 
8 88.213 2.729 4.224 2.011 1.166 98.343 
9 86.655 2.722 3.992 2.478 1.734 97.582 

10 85.786 2.696 4.213 1.712 0.951 95.358 
11 85.708 3.023 4.373 1. 922 1. 220 96.247 
12 85.263 3.059 4.677 2.993 1.316 97.308 
13 83.436 2.734 4.568 3.593 2.287 96.618 
14 86.239 2.828 4.629 1.622 0.907 96.226 
15 87.841 2.624 4.264 1. 654 0.930 97.312 
16 85.801 2.412 4.347 1. 316 0.705 94.581 
17 85.090 2.436 5.159 1.981 1.035 95.700 
18 83.445 2.048 4.421 3.185 1.851 94.949 

Two experiments denoted as individual tidal constituent estimation (PA_ITC) and combined tidal 
constituents estimation (P A_ CTC) are performed. For the first, the same data assimilation procedure 
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as that of the identical twin experiment ITE_Sta9 is individually applied for each of the five tidal 
constituents to the obtain optimal open boundary conditions of each tidal constituent. Here 5 control 
variables in total are used for each constituent within each data assimilation process based on the 
results of the identical twin experiments (model simulation is not sensitive to a6). The optimal 
harmonic constants ofthese five tidal constituents from the separate data assimilation processes are 
then combined and used as the lateral open boundary conditions for a new simulation run. For the 
latter, the harmonic constants of the five tidal constituents are estimated in one data assimilation 
process at the same time(25 control variables in total). Thus the interaction among the tidal 
constituents is included while the tides propagate into shallow coastal region. Based on the results 
of the identical twin experiments, the experiment ITE_Sta9 in which data from the nine coastal 
stations were assimilated got almost the same results as the experiment ITE_Sta 18. And topography 
and geometry inside bays or inside rivers cannot be well resolved by the present model grid 
resolution, so this may cause the model results at grid points inside shallow bays not to match the 
corresponding observations well. Therefore, tidal predicted elevations (calculated by using the 
harmonic constants of the corresponding constituent from CO-OPS) from the 9 stations ofiTE_Sta9 
are used in the data assimilation process, and elevations from the additional 9 stations from 
ITE_Sta18 are used as references. Harmonic constants of each tidal constituent from Schwiderski' s 
global tide model are interpolated along the open boundary and then used as initial values of the 
control variables. 

5.1.1. Optimal Control Variables 

The optimal quadratic polynomial coefficients of the amplitude and phase from experiment PA_ITC 
are listed in Table 5 .2. The optimal harmonic constants (amplitude and phase) of these 5 major tidal 
constituents along the open boundary are compared with the initial values from Schwiderski' s global 
tide model in Figure 5 .1. It can be seen that the optimal amplitudes of the M 2 , S 2 , K 1 and 0 1 

constituents along the open boundary from the two data assimilation experiments PA_CTC and 
P A_ITC are close, but about 2 em greater of the P A_ CTC than P A_ITC for N2• The optimal 
amplitudes of M2 , S2 are close to those of Schwiderski's global tide model results. The optimal 
phases of M2 from the two experiments are very close and smaller than those of Schwiderski' s global 
tide model from 5o at southwest to 20 o at northeast. There are almost 10 o differences of the optimal 
phases of S2 and N2 between the two experiments PA_ITC and PA_CTC, and they are smaller than 
those of Schwiderski's global tide model results. The optimal phases of 0 1 from the two 
experiments are very close, and they are greater than those of Schwiderski's model results. 

Table 5.2. Optimal quadratic polynomial coefficients (Eq. 3.1 and 3.2) for the amplitude and phase 
of the five major tidal constituents from experiment P A lTC 

Constituent al az a3 a4 as 

M2 0.409 -0.301 0.332 0.123 -0.385 
s2 0.601 -0.384 0.889 0.321 -0.279 
N2 0.819 -0.585 0.546 0.341 -0.230 
Kl 0.870 -0.202 0.060 0.206 -0.274 
01 0.568 0.726 -0.217 0.230 -0.442 
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Table 5.3. Comparison of observed and computed harmonic constants (amplitude, A, in centimeters and local phase, 8, in degrees) of 
M?. S?. N?. K, 0, at 18 tide ~rau~re 1 "'J -- .. , '-' ' ' 
Station M2 s2 N2 K1 01 

Obs. MODEL Obs. MODEL Obs. MODEL Obs. MODEL Obs. MODEL 

A 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 

Boston 139.5 109 141.5 108 22.0 146 20.6 151 30.7 77 30.3 79 15.0 205 10.0 197 11.9 186 7.9 193 
New London 36.6 58 44.7 53 7.2 69 6.7 73 8.9 34 10.2 25 7.5 179 8.4 187 5.2 203 6.2 190 
Newport 52.9 1 58.5 1 12.3 23 10.1 34 12.7 344 14.4 348 6.4 168 8.5 169 5.1 198 6.3 175 
Bridgeport 98.5 108 90.2 105 16.6 134 13.2 135 21.5 86 18.1 78 9.1 191 10.1 204 6.6 218 7.3 206 
Montauk 29.6 47 33.5 44 6.5 58 5.4 60 7.9 23 8.6 15 7.3 179 8.0 186 5.1 207 5.9 188 
Willets Point 113.5 116 115.6 116 18.6 141 17.3 148 23.0 91 23.2 91 9.8 192 11.0 209 6.4 229 7.8 210 
Sandy Hook 69.3 7 68.5 17 13.7 35 11.5 44 15.7 350 16.5 357 10.5 175 9.8 181 5.4 171 7.5 180 
Atlantic City 60.1 356 58.9 1 11.9 20 9.8 33 14.0 336 14.4 347 11.2 181 9.3 177 7.7 167 7.3 179 
Cape May 72.2 28 68.0 27 12 0 7 56 10.8 55 15.8 9 15.6 7 10.9 199 9.6 185 8.3 185 7.3 186 
Lewes 61.5 31 63.9 31 10.9 56 10.1 58 13.2 8 14.8 10 10.4 202 9.4 187 8.7 189 7.2 189 
CBBT 39.4 21 39.1 27 7.4 47 6.6 49 8.9 2 10.0 9 5.9 186 10.4 188 4.7 206 7.7 189 
Duck 49.1 359 47.4 6 9.3 23 7.6 28 11.5 338 11.6 345 9.2 175 9.2 177 6.1 190 7.1 180 
Cape Hatteras 45.3 353 45.8 1 8.2 16 7.1 21 10.6 331 11.1 343 9.4 185 9.8 180 7.5 186 6.6 196 
Springmaid 75.1 357 78.1 359 13.6 21 11.4 17 17.4 340 17.4 345 10.3 189 10.5 188 7.7 193 8.0 196 
Charleston 75.8 17 79.8 14 13.1 39 10.9 36 16.7 359 16.5 6 10.4 202 10.5 199 7.8 205 7.6 208 
Mayport 66.2 28 69.9 7 11.1 52 10.9 24 14.9 10 14.0 352 8.2 204 9.8 196 6.0 212 6.8 205 
St. Augustine 66.2 14 66.1 7 11.2 36 10.2 23 16.3 355 13.1 352 10.1 197 9.6 196 7.3 202 6.6 205 
Trident 51.7 7 53.7 6 8.1 28 8.5 19 11.9 348 11.1 351 10.1 202 8.9 197 7.7 205 5.9 206 
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5.1.2. Correlation Coefficients and RMS Errors 

RMS errors and correlation coefficients between the tidal predictions and the simulated elevations 
are plotted in Figure 5.2. The RMS errors (correlation coefficients) with the open boundary 
conditions from Schwiderski' s tidal model are generally smaller than 15 em (greater than 0.9) at the 
coastal tide gauge locations. It shows that the Schwiderski' s tidal model results are accurate in deep 
waters (which may be reasonable to be used as open boundary conditions for a regional ocean 
model). For the data assimilation experiments PA_ITC and PA_CTC, both the RMS errors and 
correlation coefficients of them are close. The maximum RMS error is 15.4 em (at Mayport), and 
the minimum correlation coefficient of 0.96. And the RMS errors are less than 5 em and the 
correlation coefficients are greater than 0.99 for the 9 coastal stations used in the data assimilation 
procedure. For most of the locations, the RMS errors (correlation coefficients) with the optimal 
boundary conditions are smaller (greater) than those with the open boundary conditions from 
Schwiderski's model results. However at Mayport and Gloucester, RMS errors (correlation 
coefficients) with the open boundary conditions from Schwiderski's model results are smaller 
(greater). 

5.1.3. Time Series and Cotidal Charts 

Comparison between the time series of the simulated elevations from P A_ITC and P A_ CTC shows 
that the simulated elevations from P A_ITC and P A_ CTC have similar patterns. Although there are 
some differences among the optimal amplitudes and phases for each tidal constituent along the open 
boundary of the two experiments, the combined optimal open boundary elevations for these two 
experiments are almost the same. The simulated elevations forced by the optimal open boundary 
conditions from these two experiments are therefore almost coincident. However, PA_CTC 
simulations are less computationally expensive than PA_ITC (computational time reduces 70%). 
Time series of tidal predictions and model results from the experiments with the open boundary 
conditions from PA_CTC and Schwiderski global tidal model are plotted in Figure 5.3. It shows 
that the model simulated elevations with open boundary conditions from Schwiderski tidal model 
are generally close to the tidal predictions (the RMS errors are less than 15 em except Newport, 
Willets Point and Springmaid), but the phases of the model results are generally delayed. The model 
simulated elevations with the optimal open boundary conditions match the tidal predictions better 
than those with the open boundary conditions from Schwiderski tidal model, especially for phase 
match. 

Coamplitudes and cophases of the five constituents are calculated by analyzing one-year simulated 
elevations from experiment PA_CTC using least squares method and presented in Figure 5.4a-e. 
For the semi-diurnal M2, S2, N2, the amplitudes in deep waters increase from southwest to northeast. 
The amplitudes of M 2 are less than 1m except inside of the Gulf of Maine where amplitudes exceed 
2m, and the amplitudes of S2, N2 are generally in the range of 8-20 em except inside of the Gulf of 
Maine where exceed 20 em. The phases of M2, N2 in deep waters are generally consistent from south 
to north, while phases of S2 in deep waters increase from south to north. For the diurnal K1, 0 1, they 
have similar amplitude and phase patterns. Amplitudes are generally not more than 10 em and 
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phases decrease from south to north. The computed and the corresponding observed tidal harmonic 
constants (published by CO-OPS) at 18 tide gauge stations (listed in Table 5.3) show that, For M

2 

constituent, the maximum amplitude error is 8 em (at New London station), and the amplitude errors 
are less than 5 em at open coast stations. The maximum phase error is 20 minutes happening (at 
Sandy Hook). For S2, N2, K 1, 0 1 constituents, the observed and computed constants are close at most 
locations. 

5.2. Optimal Estimation of Wind Drag Coefficients 

The identical twin experiments in section 4.2.2 demonstrate that the wind drag coefficients can be 
exactly recovered by assimilating the pseudo-observations generated by model. In this section, the 
observed subtidal water levels at tide gauge stations along the U.S. East Coast are assimilated into 
the model. Experiments with one, eight and sixteen control variables were performed. And the 
results with data assimilation are compared with those without data assimilation ( C d calculated from 
Eq. 3.4, and the experiment is denoted as PA_NoDA). The subtidal water level forecasts with data 
assimilation are also evaluated using the results of an experimental nowcast/forecast system. 

5.2.1. Data and Numerical Scheme 

Hourly water level observations from 18 NOS tide gauge stations (shown in Figure 2.2) were filtered 
using a 30-hour low-pass Fourier filter to remove the astronomical tidal signals to obtain subtidal 
water levels. The EDAS surface wind fields from the National Centers for Environmental Prediction 
(NCEP) in the National Weather Service (NWS) were used as the surface forcing in the numerical 
model. 

The forward model was first spun up from rest for 10 days, with the wind drag coefficients 
calculated from Eq.3.4 to create initial fields for the adjoint data assimilation system. The 
variational adjoint data assimilation was then continuously performed for 50 days (911 0 -
1 0/3011996) with a 24-hour data assimilation window. The optimal values of Cd from each previous 
day was used as the initial guess for the following day's data assimilation. After obtaining the 
optimal Cd the forward model was reintegrated for 24 hours with the optimal Cd. A new initial field 
was created and saved at the end of each day as the initial condition for the following day's 
simulation. 

5.2.2. Data Assimilation Results without the Penalty Terms 

In this section, penalty terms in Eq.3.5 are not considered in order to optimize only the simulated 
subtidal water levels. The time series of the optimal wind drag coefficients from the three 
experiments are presented in Figures 5.5(a-c). For the experiment with one control variable (denoted 
as PA_NoPTl), the optimal values of Cd varies from -5.0 to 6.0. Negative values ofCdindicate that 
the wind stress direction is opposite that of the surface wind in order to minimize the cost function. 
For the experiment with eight control variables (PA_NoPT2), the temporal variations of the optimal 
Cd seems to be uncorrelated with each other. This may be caused by the definition of the eight 
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control variables, but it is not unexpected since the changes in Cd are made to compensate for 
assumed errors in the wind fields. The absolute values of the optimal Cdare generally less than 20.0. 
However, the variance of each optimal Cd is greater than that of the one control variable experiment, 
and some values seem to be unreasonably large compared with the wind drag coefficients calculated 
using Eq.3.4. However, the magnitude of the cost function is reduced significantly with the optimal 
Cd from this experiment. This may indicate that the magnitude and/or direction of the surface wind 
stresses are not accurate enough so that the numerical model can not simulate the subtidal water level 
well compared with the observations. In order to minimize the cost function, the wind drag 
coefficients need to be adjusted in the wind stress computation. For the case with 16 control 
variables (PA_NoPT3), the optimal wind drag coefficient components Cdx and Cd.v are not only 
different in magnitude but are also occasionally opposite in sign. From Eq. 3.3 we know that the 
wind stress direction will remain in the same direction as the surface wind only when Cdx is equal 
to Cdv· So the optimal Cdx and Cdy allow the wind stress direction calculated with the optimal Cdx and 
cdy to deviate from that of the surface wind. If both cdx and cdy are positive, the wind stress direction 
is off from the wind direction less than 90°. And if Cdx and Cdy are both negative, the wind stress 
direction is totally opposite to the wind direction. 

Time series of the cost function for these three experiments are presented in Figure 5.6. In general, 
the values of the cost function with data assimilation are less than those without data assimilation, 
and the values of the cost function from P A_N oPT3 are smallest. This demonstrates that, in the 
sense of minimizing the cost function, the best results are obtained from the experiment with 16 
control variables. It also indicates that allowing the wind stress to change direction in the data 
assimilation procedure improves the accuracy of the model simulated subtidal water levels. 

Time series of the subtidal water levels (shown in Figure 5.7) show that even if only one control 
variable for the entire model domain is used in the adjoint data assimilation process, the simulated 
subtidal water levels at 18 stations are closer to the observations than those without data assimilation 
(in which the wind drag coefficient is calculated using the Large-Pond formulation). The results from 
the 8 control variable experiment show that the simulated subtidal water levels are much closer to 
the observed subtidal water levels than the one control variable experiment. The simulated subtidal 
water levels from the 16 control variable experiment match the observations well for most stations 
both in amplitude and phase, even during strong wind periods. 

The correlation coefficients and RMS errors for the experiment without data assimilation and for 
these three data assimilation experiments are plotted in Figure.5.8. The correlation coefficients of 
the experiment without data assimilation are the lowest and vary from 0.5 to 0.88. The correlation 
coefficients for the experiment with 16 control variables are the highest among these four 
experiments and vary from 0.93 to 0.98. The RMS errors without data assimilation are the largest 
except at the St. Augustine station (which is already small) and vary from 6 em to 14 em. The RMS 
errors with 16 control variables are the smallest and vary from 3.3 em to 5.3 em. From wind drag 
coefficient laboratory experiments, we know that the wind drag coefficient is related to the wind 
speed, and therefore wind drag coefficients vary in space and time. Since we have allowed the 
optimal values of Cd to represent changes in the original wind data to improve the simulated subtidal 
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water levels along the coast, we can expect a variation in the calculated optimal values of Cd over 
space and time, and which will then be correcting for a variety of wind data problems (and possibly 
other problems as well). Since eight wind drag coefficients might represent the spatial variations 
of wind stress better than one control variable, the simulated subtidal water levels from PA_NoPT2 
are closer to the observations than PA_NoPT1. In addition to optimizing the wind stress magnitude, 
the 16 control variables also allow to adjust the wind stress direction by any angle. Therefore the 
simulated subtidal water levels are further improved with respect to PA_NoPT2. The more control 
variables that are used in the data assimilation procedure, the better the results should be. However, 
it must also be noticed that more control variables require more observations to be assimilated into 
the model in order to obtain better optimal control variables, which, in tum, make the simulated 
results match observations better. Only if there are adequate representative observations can more 
control variables be used in the data assimilation process. The relationship between the minimum 
number of observations and the number of control variables depends on the spatial and temporal 
distribution of the observations (Zhang, 2000) and could be examined with identical twin 
experiments. 

The results from the above experiments show that the values of the cost function with data 
assimilation decreased as expected. However, some optimal values of Cd appeared to be too large 
and/or negative, perhaps indicating a physically unrealistic solution. Such abnormal values of Cd 
may be due to the following reasons: (1) Errors in the EDAS wind fields (wind speed and wind 
direction, whatever the causes) may have to be corrected by changing the optimal wind drag 
coefficients (a negative value of Cd would be obtained if the wind direction was wrong). (2) Our 
basic assumption is that all errors in the simulated subtidal water levels are produced by errors in the 
surface wind field, and the errors in surface wind field are corrected and represented by changes in 
wind drag coefficients. This assumption infers that the other conditions and parameters (initial 
conditions, open boundary conditions, surface air-pressure field, nonlinear effects, friction, etc.) are 
perfect and that all errors produced by these factors can be projected onto the surface wind drag 
coefficients (control variables). This could result in an abnormal value of Cd value if the assumption 
was invalid. (3) Cd is assumed to be constant either throughout the domain (one control variable) 
or in each subregion (8 and 16 control variables) because oflimitations of the available observations. 
However, the true spatial variations of Cd may not be properly represented in the model. (4) The 
penalty terms are not considered. The minimization of the cost function alone does not ensure that 
the adjoint data assimilation technique obtains reasonable values of optimal control variables in the 
physical sense. The constraint conditions and penalty terms may be necessary to obtain more 
reasonable values of these control variables. 

5.2.3. Effects of Penalty Term and Smoothness of Control Variable 

The purpose of adding the penalty terms to the cost function is to smooth and stabilize the estimates 
of the control variables. The estimates of the control variables from the cost function without the 
penalty terms are indeed solutions satisfying the desired objective of minimizing the misfits between 
the model results and observations, but they are rapidly varying in space and time. Thus, they are 
probably not desired solutions in physical and realistic respects. Our goal is to seek a balance 
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between misfit minimization and solution smoothness. The first objective should dominate the 
latter, and the role of smoothing terms must be kept to a minimum so that the realistic structural 
features of the estimated control variables can be preserved to the greatest extent. The influences 
of these two objectives are regulated through the weighting coefficients. Therefore, two penalty 
terms in the cost function Eq. 3.5 with weighting coefficients y1 and y2 were considered. Three 
additional experiments using 16 control variables were performed with different weighting 
coefficients (see Table 5.4). 

Time series of the optimal values of Cd in the x-direction (similar results for they-direction) from 
these experiments are shown in Figure 5.9. The time series of the optimal Cd from the experiments 
with penalty terms are very similar. And they are much smoother than that of without penalty terms. 
With the penalty terms, the spatial and temporal variations of the optimal Cd are smoothed, and 
extremely large values in the optimal Cd are eliminated. Thus, adding the penalty terms to Eq. 3.5 
appears to lead to a more physically realistic depiction of the optimal wind stress fields. Figure 5.10 
shows that with the penalty terms, correlation coefficients decrease and RMS errors increase at the 
tide stations. Differences of correlation coefficients and RMS errors between with and without 
penalty terms are less than 0.1 and 2 em, respectively. This indicates that the realistic structural 
features of the subtidal water levels are preserved, while the estimated optimal values of Cd are 
smoothed. According to the experiment results, the most acceptable results would be obtained by 
setting the weighting coefficients y1 = y2 = 0.001 in Eq. 3.5. The number of iterations for each 24-
hour data assimilation is reduced 50% with the addition of the penalty terms, thus reducing the 
computational time. The effects of the penalty terms on water level forecasts are discussed in the 
following section. 

T bl 5 4 W . h . C ff . f a e . . e1g1 tmg oe ICients o y1an d (see Eq. 3.5) 1'2 

Case name YJ 1'2 

PA_NoPT3 0.0 0.0 

PA_PT1 0.001 0.001 

PA_PT2 0.0025 0.0025 

PA_PT3 0.005 0.005 

5.2.4. Subtidal Water Level Forecasts 

One important purpose of the water level data assimilation is to improve subtidal water level 
forecasts along the coast by providing better initial conditions for the forecasting model. Therefore, 
a 24-hour nowcast/forecast system was configured, as shown in Figure 5 .11. In this system, the 
forward model is run for 10 days to create restart files for the first nowcast/forecast run. The 
nowcast model is run for 24 hours (forced by the EDAS analyzed wind fields) to create an initial 
field for the forecast model. The forecast model is then run for the next 24 hours forced by ETA 
forecasted wind fields from NCEP/NWS from the initial fields created by the nowcast model. The 
forecast model utilizes the same grid, bathymetry, and open boundary conditions as the nowcast 
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model. The following nowcast/forecast experiments were continuously performed for the period of 
9111/96 to 12/31/96 ( 110 days), and the forecast water levels are used in statistical analysis: 

SWL_Fl: 
No data assimilation is included in the nowcast mode, and the wind drag coefficients for both the 
nowcast and forecast modes are calculated by using Eq.3.4 (denoted as the baseline run or without 
data assimilation case); 

SWL_F2: 
24-hour water level data assimilation with 16 control variables and without penalty terms is 
performed in the nowcast mode to obtain optimal values of Cd. The wind drag coefficients are 
calculated using Eq.3.4 in the forecast mode; 

SWL_F3: 
The same data assimilation procedure as SWL_F2 is performed in the nowcast mode, but the optimal 
values of Cd from the previous day's nowcast are applied to the forecast of the next day. 

SWL_F4: 
A 24-hour water level data assimilation with 16 control variables and penalty terms (y1=y2=0.001) 
is performed in the nowcast mode, and the wind drag coefficients are calculated using Eq.3.4 in the 
forecast mode; 

SWL_FS: 
The same data assimilation procedure as SWL_F4 is performed in the nowcast mode, but the optimal 
values of Cd from the previous day's nowcast are applied to the next day's forecast. 

We are concerned with how much improvement of the water level forecasts is made by using the 
data assimilation technique in the nowcast/forecast system and how long the improvement could last. 
Water level forecasts for each hour of a 24-hour forecast circle over the 11 0-day period are 
subsampled (110 data points in total for each hour) and compared with the corresponding 
observations. The variations of the average correlation coefficients and RMS errors over the 18 
stations with forecasting time for these experiments are presented in Figure 5 .12. For the experiment 
without data assimilation (SWL_F1), the average RMS errors of the subtidal water level forecasts 
over 18 stations vary with forecasting time in the range from 9.8 em to 13 em. The average 
correlation coefficients vary from 0.75 to 0.8. Both average RMS errors and correlation coefficients 
do not change much as forecasting time increases. For SWL_F2, the RMS errors in the first two 
hours is about 3 em smaller than that of SWL_F1 (without data assimilation). The RMS errors 
decrease about 0.5 em from hour 3 to hour 11. When the forecasting time is greater than 11 hours, 
differences of the RMS errors between SWL_F1 and SWL_F2 are insignificant. Applying the 
optimal values of the previous day's Cd to the next 24-hour forecasts (SWL_F3), the RMS errors are 
a little smaller than that of SWL_F2 in the first 4 hours. However, the RMS errors increase very fast 
and they are even much bigger than that of SWL_F1 as the forecasting time is greater than 6 hours. 
These results indicate that, on the average RMS errors over these 18 tide stations, the improvement 
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of subtidal water level forecasts by applying the subtidal water level data assimilation without 
penalty terms is mostly limited in the first 3 hours. After 3 hours, the improvement on water level 
forecasts is not significant, and the subtidal water level forecasts by extending the optimal values of 
Cd of the previous day's nowcasts to the next 24-hour forecasts become even worse than that without 
data assimilation. By introducing penalty terms into the cost function formulation (SWL_F4 and 
SWL_F5), the RMS errors become smaller than that of SWL_F2, and they are about 3 em smaller 
than that of SWL_Fl in the first 5 hours. For SWl_F5, the RMS errors become larger than that of 
SWL_F1 after about 8 hours. The results of SWL_F3 and SWL_F5 indicate that the optimal values 
of Cd from the previous day's nowcasts cannot be simply applied to the next day's forecasts since 
the surface wind fields change with time, especially in the transition period of a storm event. 

The average improvement by the data assimilation technique over the 18 stations for each forecasting 
time is calculated as 

RMSnoDA- RMSDA 
P = X 100% (5.2) 

RMSnoDA 
where Pis average improvement, RMS 1wDA and RMS DA are average RMS errors from the experiments 
without and with data assimilation, respectively. Figure 5.13 shows that the improvement of 
SWL_F2 decreases faster than SWL_F4. More than 10 % improvement takes place in the first 3 
hours for SWL_F2 and in the first 9 hours for SWL_F4. The improvement of SWL_F4 is greater 
than SWL_F2. Therefore, including the penalty terms in the cost function to smooth the optimal 
wind drag coefficients leads to the most improved forecast results. 

RMS errors of the subtidal water level forecasts from SWL_F4 as a function of both forecasting time 
and water level station are presented in Figure 5.14. North ofCBBT (stations 1-13), the RMS errors 
in 24-hour forecasts are less than 12 em and are generally less than 10 em during the first 6 hours. 
The maximum RMS errors of20 em occurred at Charleston, South Carolina. However, the nowcast 
RMS errors at Charleston (Figure 5.1 0) are not significantly larger than those of the other stations. 
In examining the ETA forecasted and EDAS analyzed surface wind fields (Figure 5.15), we found 
that the two wind fields are very different near Charleston during Julian days 320-322,328-329, and 
360-362. In those days, the forecasted winds produced large subtidal water level forecasts at 
Charleston, Springmaid and Fort Pulaski, which could explain the large RMS errors in that region. 

The nowcast/forecast experiments demonstrate that the average RMS errors of forecasted water 
levels over 18 water level stations within a 24-hour forecast cycle without data assimilation vary 
from 9.8 em to 13 em, and the average correlation coefficients range from 0.75 to 0.8. The 
improvement in the water level forecasts with data assimilation primarily takes place within the first 
6 hours. There is no significant improvement after 6 hours (the differences are less than 1 em). This 
implies that the impact of the initial conditions generated by the model nowcast on the next day's 
forecasts is limited within about 6 hours. Therefore, further experiments should be performed on 
how to extend the optimal values of Cd from the previous day's data assimilation to the next day's 
water level forecasts. 

5.3. Total Water Level Nowcasts/Forecasts 
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As was described earlier, total water level variation includes both astronomical tides and nontidal 
water level variation. In fact, the most concerned by mariners is always the total water levels which 
have direct impacts on the life of human being and can be directly measured at water level stations. 
Since it is difficult to exactly separate nontidal water levels from astronomical tides, our ultimate 
purpose is to produce total water level forecasts. If harmonic constants are available at a station, the 
astronomical tides at any time can be accurately predicted with either harmonica! or response 
techniques. If harmonic constants are not available, the astronomical tides can be obtained with a 
numerical model forced with tides along the open boundaries. However, tidal simulations are 
generally not as accurate as tidal prediction since there are many undetermined factors for a 
numerical model system and errors of the boundary forcing and bathymetry. Subtidal water level 
forecasts can be obtained with numerical simulations forced by forecasted surface winds and 
atmospheric pressures. Here, several experiments were performed to compute total water level 
forecasts: 

TWL_Fl: 
The nowcast and forecast runs are forced with the optimal harmonic constants of M2 , S2. N2, K1, and 
0 1 obtained from experiment PA_CTC1 in section 5.1 along the open boundary. The nowcast run 
is forced with EDAS surface winds and the forecast run is forced with ETA forecasted winds. The 
wind drag coefficients for both nowcast and forecast runs are calculated with Eq.3.4. 

TWL_F2: 
The same tidal open boundary conditions as TWL_F 1 are used to force both the nowcast and forecast 
runs. The nowcast run is forced by EDAS surface winds with the optimal wind drag coefficients 
obtained through the observed water level data assimilation. The forecast run is forced by ETA 
forecasted winds with wind drag coefficients calculated using Eq.3.4. 

TWL_F3: 
At coastal stations, astronomical tides are calculated using harmonic tidal prediction of 37 tidal 
constituents. The same nowcast/forecast scheme as SWL_F4 in Section 5.2.4 is implemented to 
obtain subtidal water level forecasts. Total water level forecasts are then derived by simply 
superimposing the simulated subtidal water level forecasts on the tidal predictions. 

The average RMS errors and correlation coefficients over 18 tide stations are presented in Figure 
5.16 as a function of the forecast hour. The RMS errors of the 24-hour forecasts ofTWL_Fl vary 
from 24-27cm. The RMS errors ofTWL_F2 vary from 12-22cm, which are 10 em less in the first 
6 hours and 5 em less after 6 hours than those ofTWL_F1. The RMS errors ofTWL_FF3 vary from 
1 0-16cm, which are about 2 em less in the first 5 hours and about 5 em less than after the first 5 
qours than TWL_F2. Figure 5.15 also shows that the RMS errors for the subtidal water level 
forecasts of TWL_F3 are greater than those of the total water level forecasts. Therefore, adding the 
tide prediction and subtidal water level forecasts together reduces the RMS errors of the total water 
level forecasts. However, the mean values of the water level observations are greater than model 
forecasts. After removing the mean, the RMS errors of TWL_F1 are reduced to about 15 em, and 
those of TWL_F2 are smaller than TWL_F1 during the first 9 hours. There is no significant 
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difference between the water level forecasts of TWL_Fl and TWL_F2 after that. Therefore, the 
differences in the mean values between the observations and the model forecasts have very important 
contributions to the RMS errors of the water level forecasts (datum errors). The wind drag 
coefficient adjustment brings the mean values of the forecasts closer to those of the observation. The 
correlation coefficients of these three experiments are all greater than 0.94, and the phase of the 
forecasted water levels closely matches the observations. The contours of the RMS errors from these 
three experiments are shown in Figure 5.17 as a function of the forecasting time and the location. 
Similar contour patterns appear in the RMS errors before and after the mean were removed. Larger 
RMS errors occurred near Willets Point, Lewes and Charleston. South of Sandy Hook, the RMS 
errors ofTWL_Fl are about 10 em, which are greater than those ofTWL_F2 and TWL_F3. Before 
the means were removed, the best results were obtained from TWL_F3 with RMS errors being less 
than 20 em for 24-hour forecasts. After the means were removed, the RMS errors ofTWL_F3 near 
the Long Island Sound (between Montauk and Sandy Hook) were larger than the other stations. The 
RMS errors increase rapidly during the first 6 hours. Interestingly, RMS errors south of Sandy Hook 
for TWL_F3 vary slowly in time and space. 

For total water level forecasts, the best results were obtained by adding tide predictions to the 
simulated subtidal water levels obtained by data assimilation with penalty terms (TWL_F3). The 
average RMS errors over 18 stations of the 24-hour water level forecasts are less than 16cm, and the 
average correlation coefficients are greater than 0.96. The accuracy of the forecasted total water 
levels (TWL_F2) is worse than simply adding the tide predictions to the simulated subtidal water 
levels. This result might not be expected, since the interaction between the astronomical tides and 
the surface winds is included in the model dynamics for TWL_F2. The reason might be explained 
as follows: (l)Tidal numerical model will not be able to reproduce exactly the tide predictions, 
which are inherently more accurate, because of errors in the tunable model parameters, open 
boundary forcing, bathymetry, and geometry. (2) Since we assume that the differences between the 
observed and the simulated water levels are caused by the errors in wind stress fields (corrected by 
adjusting wind drag coefficients), the errors in the simulated astronomical tides will be attributed to 
the errors of the wind stress fields. Such errors cannot be properly corrected by adjusting the wind 
drag coefficients and may result in physically unrealistic wind drag coefficients. (3) since the 
astronomical tide signal is much stronger than the subtidal water level signal, the latter plays a less 
significant role in the assimilation of total water levels. This may result in unreasonable corrected 
wind stress fields. Although Case3 is the best choice for total water level forecasts at coastal 
stations, its shortcoming is that tidal predictions are only available at observation locations. For 
other locations, TWL_F2 is the next best option for computing total water level forecasts. Finer grid 
resolution, more accurate bathymetry, coastline data and improved tidal open boundary conditions 
can all help to improve the performance of the tidal simulations. 
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Figure 5.1. Amplitudes and phases from Schwiderski global tide model and the optimal data 
assimilation experiments. Solid line, from Schwiderski global model; dashed line with plus, 
from PA_ITC; dotted line, from PA_CTC. 
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station name indicates that the data from that station were used in assimilation. 
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Figure 5.3. (Continued). 
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Figure 5.4a. Cotidal charts of M2 constituent from model results of PA_CTC. Solid line, 
coamplitudes (in centimeters); dotted line, cophases (in degrees). 
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Figure 5.4b. Cotidal charts of Sz constituent from model results of PA_CTC. Solid line, 
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Figure 5.4c. Cotidal charts of N 2 constituent from model results of PA_CTC. Solid line, 
coamplitudes (in centimeters); dotted line, cophases (in degrees). 

65 



25°N •· ······ ····· 

85°W 80°W 75°W 70°W 85°W 600W 55°W 

Figure 5.4d. Cotidal charts of K1 constituent from model results of PA_CTC. Solid line, 
coamplitudes (in centimeters); dotted line, cophases (in degrees). 
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Figure 5.4e. Cotidal charts of 0 1 constituent from model results of PA_CTC. Solid line, 
coamplitudes (in centimeters); dotted line, cophases (in degrees). 
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Figure 5.5a. Time series of optimal values of Cd for the one control variable experiment 
(PA_NoPTl). 
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Figure 5.5b. As Figure 5.5a, but for the eight control variables experiment (PA_NoPT2). 
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Figure 5.5c. As Figure 5.5a, but for the 16 control variables experiment (PA_NoPT3). The 
solid line, Cdx; dashed line, Cdy· 
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Figure 5.6. Time series of the cost function for the experiments with and without data 
assimilation. 
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Figure 5.7. Time series of the observed and simulated subtidal water levels with and without 
data assimilation. 
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errors after the mean value was removed. 

82 



6. CONCLUSIONS 

A water level data assimilation system for the East Coast of the United States has been developed 
to improve water level simulation and forecasts through adjustment of the open boundary conditions 
and surface wind drag coefficients. The system uses the two-dimensional Princeton Ocean Model 
with an orthogonal curvilinear grid. The adjoint technique is used to derive the gradient of the cost 
function. The correctness and performance of the data assimilation system are verified with identical 
twin experiments. The results show that gradient of the cost function can be efficiently computed 
with the adjoint approach. The true solutions of the control variable can be accurately recovered by 
assimilating pseudo-observations, even if the first guess values of the control variables are quite 
different from the true solution. The identical twin experiments also show that water level 
observational errors affect the convergence rate and performance of the minimization procedure. 

Using data assimilation to compute the optimal tidal forcing along the boundary led to better results 
than using the tidal open boundary conditions from Schwiderski' s global model. For this case, RMS 
errors at coastal stations are less than 7 em. 

Subtidal water levels were also assimilated to compute optimal surface wind drag coefficients, the 
results of which showed improvement even with one control variable. The most accurate simulated 
subtidal water levels were obtained with 16 control variables (using x- andy-direction pairs in 8 
regions). In this case, the correlation coefficients at 18 water level stations were greater than 0.93, 
and the RMS errors were less than 5.3 em. This experiment demonstrates that both the magnitude 
and direction of the wind stress need to be adjusted in order to minimize the cost function. Penalty 
terms should also be included in the cost function to assure the smoothness of the estimated optimal 
wind drag coefficient in space and time. Results from the experiments with the penalty terms 
indicate that the estimated optimal values of Cd are smoother in space and time than those without 
the penalty terms. However, the RMS error differences between the simulated subtidal water levels 
with and without the penalty terms are very small. Thus, adding the penalty terms leads to smoother 
solutions that still preserve the physical features of subtidal water levels. 

The subtidal water level nowcast/forecast experiments demonstrated that most of the improvement 
in water level forecasts by applying water level data assimilation into the nowcast/forecast system 
occurred within the first 6 hours, with no significant differences thereafter. This indicates that the 
impact of the initial conditions from the nowcast on the next day's forecast is limited within 6 hours. 
The optimal values of Cd from the previous day's water level data assimilation cannot be directly 
applied in the next day's water level forecast due to changes in the surface wind field. These values 
can only be reasonably extended about 3-6 hours into the forecast. More experiments should be 
performed on how to extend the optimal values of Cd of the previous day to the next day's water 
level forecast. 

For total water level forecasts, the best results were obtained from an experiment that simply adds 
astronomical tidal predictions to the optimal simulated subtial water levels. The average RMS errors 
of 24-hour water level forecasts over 18 stations are less than 16 em, and the average correlation 
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coefficients are greater than 0.96. However, such forecasts can only be made where observations 
are available. For the model forecasted total water levels (TWL_F2), The RMS errors of the 24-hour 
forecasts are in the range of 12-22 em. In conclusion, tidal open boundary conditions and surface 
wind drag coefficients can be well estimated by assimilation of water level data along the coastal 
stations, thereby improving nowcast/forecast water level simulations. 

Due to limitations in the number and spatial distribution of available water level observations (the 
real-time water level data are available at only 18 water level gauge stations within the model 
domain), a large number of control variables cannot be used in the data assimilation process. Sea 
surface height (SSH) data from satellite altimeters should help to alleviate this limitation. 
Combining water level gauge observations that are long-term in time with altimetry data that cover 
large spatial areas would improve the resolution of the wind drag coefficients, and thus the accuracy 
of the nowcast/forecast results. 
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APPENDIX A. VARIATIONAL OF LINEAR TERMS OF THE COST FUNCTION 
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n=2 i=2 j=3 

N /M-lJM-1 N /M-lJM-2 

T29 = - L L L sl,jaA.v7,j8 hl~j-1 = - L L L si,j+la:Av7,j+l8 hl~j 
n=2 1=2 }=3 n=2 1=2 }=2 

N IM-lJM-1 N-IIM-IJM-1 

T30= L L L si,jaA.v7,j8h;~j-l = L L L sl,ja:Av7.~'8h;~j 
n=2 1=2 }=3 n=l 1=2 j=3 

N IM-1 JM-1 n -n-l N-IIM-1 JM-2 n+l -n 
T31=-.L .L .L S .. a.A. .. 8h.. 1 =-.L .L .L S.+1aA .. +18h .. 

n=2 i=2 j=3 I,J VI,) I,)- n=i i=2 j=2 I,) VI,) I,) 

N IM-i JM-1 n -n-l N-IIM-1 JM-1 n+l -. 
T32 = .L .L .L R .. CbA. . . 8V. . = .L .L .L R .. CbA. .. 8V . . 

n=2 i=2 j=3 I,J VI,) I,J n=l i=2 j=3 I,] VI,) I,] 
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N IM-1 JM-1 

T33 = L L' L Ail ;,jbh;~j 
n=2 i=2 j=l 

N IM-1 JM-1 'l n .s:'J~n-1 N-1/M-l JM-1 'l n+1.s:'J~n 
T34 = - 2. 2. 2. Ari . .un. . = - 2. 2. 2. Ari . . urt; . 

n=2 i=2 j=2 '· 1 1
'
1 n=1 i=2 j=2 '·1 '

1 

N IM-1JM-I 

T35 = -0.5{3 L L L A;.~ .8/tinj 
n=2 i=2 j=2 I,] ' 

N IM-1 JM-1 n -n-l N-IIM-1 JM-1 n+l s:~-:n 
T36 = -0.5{3"£ L L A;. .. &i j = -0.5{3 L L L A;. .. Urt; j 

n=2 i=2 j=2 I,J ' n=1 i=2 j=2 I,J ' 

_ RN IM-IJM-1 1 n f:l~n-l_ RN-IIM-IJM-1 1 n+ls:J~n 
T37- p "£ "£ "£ /L.;J· .urt; . - p "£ "£ "£ /L.;J· . urt; . 

n=2 i=2 j=2 I,J ,J n=l i=2 j=2 I,J '
1 

N IM-1 JM-1 
T38 = "£ "£ "£ ...t~ .8U.n. 

n=2 i=2 j=2 UI,J I,) 

T 39 
_- N IM-1 JM-1 1 n ~rn-1 _ _ N-liM-1 JM-1 1 n+1 ~Tn 
- 2. 2. 2. A-. .uu . . - 2. 2. 2. A... . uu . . 

n=2 i=2 j=2 u 1' 1 1
' 1 n=1 i=2 j=2 u I,J I,J 

N IM-1JM-1 

T40= -0.5{3"£ "£ "£ Au~ .&Jti 
n=2 i=2 j=2 

1
'
1 ' 

f3
N IM-1JM-1

1 
n s:rrn-1 13

N-11M-1JM-1 1 n+1s:rrn 

T41 = -0.5 n~2 i~2 j~2 /lu;,pu i,j = -0.5 n~1 i~2 j~2 /lu;,j uu i,j 

- RN IM-1JM-1 1 n s:rrn-1- RN-liM-IJM-1 1 n+1s:rrn 
T42-p"i "£ "£ ./!..,. . . uu .. -p"i "£ "£A- .. uu .. 

n=2 i=2 j=2 u 1' 1 I,J n=1 i=2 j=2 u I,J 
1
'
1 

N IM-1 JM-1 n -

T43= "£ "£ "£ A.- .8V;~ 
n=2 i=2 j=2 

1 
,J ' 

T44 
__ N IM-1JM-1 

1 
n ~rn-1 __ N-1/M-1JM-1 1 n+1 ~rn 

- }: }: }: A- . . uv ' - }: }: }: A- ' uv ' 
n=2 i=2 j=2 VI,) I,) n=1 i=2 j=2 VI,) I,) 

N IM-1JM-1 

T45 = -0.5{3"£ "£ "£ ...t~ .bV"i 
n=2 i=2 j=2 v 

1
'
1 1

' 

N IM-1 JM-1 
1 

n -n-1 f3 N-1/M-1 IM-1 1 n+1 ~T n 
T46 = -0.5{3'L 'f. 'f. A, . . bV.. = -0.5 · 'f. 'f. 'f. A, .. uv ... 

n=2 i=2 j=2 v 1' 1 1
'
1 n=1 i=2 j=2 v 

1
'
1 1

'
1 

- R N IM-1JM-11 n ~rn-1_ R N-1IM-1JM-11 n+1~rn 
T47-p·"i "£ "£ /l..,. .. uv,. -p·"i "£ "£ A- .. uv .. 

n=2 i=2 j=2 v I,J 
1

' 1 n=1 i=2 j=2 v 
1
'
1 1

'
1 
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APPENDIX B. VARIATIONAL OF THE NONLINEAR TERMS 

(B.l) 

+.!.[(H. ·+H·. I)V.n~I+(H I.+H I .I)Vni-1]8Un~l 8 I,J I,J- I,J 1- ,J 1- ,J- 1- ,J I,J 

(B.2) 

+_![(H. ·+H· .I)V.n~I+(H.I ·+H·I. I)V.n-11]8U~~~~ 8 1,] 1,]- 1,] 1- ,] 1- ,]- 1- ,] 1,]-

liF . . = 1li,jAM wn~I- Hi.jAM wn~I + Hi.jAM c5V".-I- Hi.jAM ov.n-I. 
31,1 D,-.. '·I D,-.. 1,1-1 L\X.. 1,1 M.. •-1,1 

Y •. l Yl,l '·I '·I 
(B.3) 

v.n-1 + vn:-1 
OF . . = 1-l,j 1,] (H . . +H. . )8U~~I 

41,] 8 1,] 1-l,j 1,] 

V n-1 vn-1 
i-1 j + i j I + ' ' (H.· I+ H. I· 1)8Un~ I 8 1,]- 1- ,]- 1,]-

+.!.[<H . +H. I . )U~~~ +(H . . I+ H. I . I )U~-:~~]ovn-~1 8 1,] 1- ,] 1,] 1,]- 1- ,]- 1,]- 1- ,] 

(B.4) 

+.!.[(H . . +H l.)un~I+(H. ·I+H. l.l)un-:ll]ov.n:-1 8 1,] 1- ,] 1,] 1,]- 1- ,]- 1,]- 1,] 
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(B.5) 

!J.yi+l.i- !J.yi-l.i bVn:-1 + !J.yi+l,j- !J.yi-l,j <)yn:-1 

<5F6;,j = 4/:J.x!J.y I,J+I 4/:J.x!J.y I,J 

!J.x . . I - !J.x . . I !J.x . I- !J.x . . I 
_ 1,}+ 1,,- <>un-1_ _ 1,)+ 1,,- <>u"-:1 1 4/:J.x!J.y 1+1

' 1 4/:J.x!J.y 1
'
1 

(B.6) 

8Fx . = 8F; !J.y,,- 8F; _1 .!J.y1_1 ,. + (8F2 . 1 - 8F3 .• 1 )!J.xl ,. 1 - (8F2 . - 8F3 . )!J.x1 ,. 1,) 1,) • I ,) • l,j+ 1,) • 1,) 1,) • 

ARU,,J [ ( n-1 Il-l) ( 11-1 11-1 )] - --4- 8F6,,1H,,J v,,j+l + v,,J + 8F6i-I,JHi-l.j v,_l,j+l +vi-I.} (B.7) 

ARU . [ ( ) ( )] - __ ~_., F H . 8V"~ 1 + 8VH + F . H . 8VII-I t 8V 11 -
1 

4 6;,] 1,) l,j+l 1,) 61-i,j 1-l,j 1-1,;+1 1-I.J 

8Fr . = 8F5 !J.x1,.- 8F5 _ 1!J.x11_ 1 + (8F4 . 1 .- 8F3 +1 .)!J.)i1• 11.- (8F4 .. - 8F3 )!J.y11 . . l,) '·1 ' 1,) ' I+ ,) I .j I '·' 1,] • 

t AR:i.J [ 8F61.1 
H1.A U1:~~1 + U,~; 1 ) + 8F61.1_1 Hi,J-1 ( u~:~~J-1 + U~~;~~)] (B.8) 

t AR:•.J [ F61.1H1_A ou,:~~J + 8U1~; 1 ) + F61.1_1H,,J-I ( ou;:~~J-1 + 8U~~;~~)] 
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N /M-lJM-1 

L L L Lj .• ~./Fx;,j = 
n=2 i=2 1=2 

N IM-11M-1 

L L L (L;,IA•:.j- Li+1,jAu;+1.1)tJ.yi,j8f'1;,1 
n=2 i=2 1=2 

N IM-11M-1 N /M-1 

+ L L L (L;,J-1Au;
1

,1-1- L,,JAu;)t:.x,,JOF2;,1 - L L L,,2Au;~2t'lxl,2t5F2;,2 
11=l i=2 j=3 n=2 i=2 

N /M-lJM-1 N /M-1 

- L L L (L;,J-1Au;~J-1 - L,,IA•~.J )t:.x,,J8Fl,,l + L L L,,2Au;,2t:.x,,Jt5Fl,,2 
n=2 i=2 j=3 n=l i=2 

f 1~1JM-1 L, }A/ .ARU, I + Li+1 lA/ I ARUi+1 j' ( ) 
- £.. £.. L . 1,) • • I+ ,) • H . vn~1 + v.·~1 OF 

n=2 i=2 j=2 4 t,J t,J+l 1.) 6i,J 

N-11M-11M L A n+1 ARU 
-L L L il-1 u· ·-1 i]'-1 . I,J . F . . H . OV." 

4 61,)-1 l,j-1 l,j 
n=l i=2 j=3 

N-llM-2 JM 

-I. L. I. 
n=l i=l j=3 

L,.+ 1 1_1A:+
1

1 
._1ARU1+1 1_1 . I+,) . F ~~· 
4 6i,J-1Hi,J-1uv,,J 

N-1/M-lJM-1 

-I. L. L. 
n=l i=2 J=2 

L A n+1ARU . 
•.J "'·I '·I F H .. ovn 

4 6;,j 1,) 1,1 

N-llM-2 JM-1 L 1 n+1 ARU 
- L L L 

i+1j.A,U. 1. 1+1]' 
· •+ ·I • F H ov· 4 6i,j 1,) 1,) 

n=l i=l j=2 

N JM-llM-1 
L L L Mij'~vn 8F)' . = 
'1=2 i=l j=J ' I,J I,) 

N IM-lJM-1 N /M-1 
"" "" "" (M,. 1 A,~ - M,. 1.+1A:. 1)t:.x, 18F5 . -"" "" M, 3A.; 3t:.x,. 28F5 . 2 """' .i.J £.J • 1,) • /,]+ • 1,) ./..J ~ • I, • I, 
n=2 i=2 j=3 11"'2 i=2 

N IM JM-1 t"" "" "" (M,._ 1 1A.,." 1 . - M, 1A.; )t:.y, 18F4 . • ~~ £..i • t-,J • I,J • 1,) 
t1=2 i=2 j=3 

N /M-llM-1 
-"" "" "" {M,._1 }A.;' I . - M, JA;'. )t:.y, 18F3 . i..J '- 1..i . t- ,) ' t,) ' 1,) 

n=2 i=l j=3 

L
N /LM-lJLM-1 M,JA.: ARV,J. + M,j.+1A: '+1ARV,j.+1 ( ) · I,J • • I,J • H n-l n-1 J: 

+ 4 i,J U,+1,J + U,,J uF&,,J 
n=l i=2 }=3 

Inserting Eqn. (B.l)- (B.8) into Eqn. (B.9) and (B.lO), 'l'nonlineartenns are derived from the 
nonlinear horizontal advection and diffusion terms in Eqn. (3.6) as, 
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'I' nonlinear term = 

N IM-IJM-1 N /M-IJM-1 

L L L L; }).: .8Fx · + L L L M; j).v" 8Fy . 
n=2 i=2 }=2 ' '·l '·' n=3 i=2 }=2 ' '·J 1

' 1 

N-l/M-IJM-1 2H A 
= L L L (L;,j).u;,~l - 4+1,j).u;:i)AY;,j '·l M 8U,~1 

n=l i=2 J=2 Ax,,, 

N-l/M-lJM-l 2H. .A 
- ~ ~ ~ (L ). n+l - L ). n+I)A •-I,J M 8U" 

£... £... £... •-l,j Ui-1,} i,j Ui,j Yi-l,j A i,j 
n=l i=3 }=2 LlXi-l,j 

N-1/M-IJM-l H .. A 
_ ~ ~ ~ ( 1 A n+l _ 1 1 n+l)A- I,J M ~:u-n 

£... £... £... '-i,j-1 "i,j-1 '-i,j!l.u;,j LlX;,j A- U i,j 
n=l i=2 }=3 Ll Y; ,} 

N-1/M-IJM-1 H . . A 
~ ~ ~ ( 1 1 n+l 1 1 n+l ) A- I,J+l M s:u-n + £... £... £... '-1,/"u;,j - '-i,}+l!l.u;,j+l LlXi,j+l A- U i,j 
n=l i=2 }=2 LlYi,j+l 

N-IIM-1JM-l H .. A 
-L L L (Mi-l,j).v;:i,j- M;,jAv~.~I)Ay;,j '·:_ M 8[1;~} 

n=1 i=2 }=3 Ay; ,j 

N-11M-1JM-2 H . . A 
~ ~ ~ (M ). n+l M ). n+l )A- I,J+l M 8U" + £... £... £... i-1,}+1 Vi-1,}+1- i,j+l Vi,j+l Yi,j+l A -y i,j 
n=l i=2 J=2 i,j+l 

N-l/M-1 
+l l 

n=l i=2 
L 1 n+l A= Hi,2AM s:.rn N IM-l L 1 n+l A= Hi,2AM J:Trn 

·2''f.· LU-2--uu.2-L L .2/1, 2LU.2 UU I 
I, 1,2 I, Lly- I, n=2 i=2 I, Ui, I, Lly- i, 

i,2 i,2 

N-1/M-IJM -I H A 
~ ~ ~ (L 1 n+l L 1 n+1) A- I,J M s:. 1 n 

- £... £... £... ; j-1./t,u· ._ 1 - ; }Au- . LlX; j A_ UY;,J 
n=l i=2 }=3 ' 

1
'1 ' 

1
'1 ' LlX;,j 

N-l/M-2 JM-1 li. A 
~ ~ ~ ( 1 A n+l L A n+l )A- •+I,] M av· 

t £... £... £... '-i+l,j-1 lli+l,}-1 - 1+1,} Ui+l,j Xi+l,j A- i,j 
n=l i=l }=3 LlXi+l,j 

N-1/M-2 JM 2H A 
- ~ ~ ~ (M A n+l - M A n+I)A l,j-1 M av· 

£... £... £... ;,J-1 v;,J-1 ;,J v;,1 xi,J-1 A •. 1 
n=l i=2 }=4 YI,J-1 (B.ll) 
N-1/M-IJM-1 2H. .A 
~ ~ ~ ( M 1 n+l M 1 n+l ) A I,J M s:.7n 

t £... £... £... i }Av · - i j+IAv. · 1 LlX; j UV; j 
n=l i=2 }=3 ' '·l ' I,J+ ' Ayi,j ' 

N-1/M-IJM-1 Jl A 
~ ~ ~ (M 1 n+l M 1 n+I)A- '·1 M s:i!n - £... £... £... i-1 }Av. 1 ·- ; }Av. · LlY; J --_--uv; J 
•=I i=2 J=3 . ,_ '1 • '·1 • Ax;,1 · 

N-l/M-2JM-I H. .A 
~ ~ ~ (M A n+l M A n+l )A- I+I.J M s:.7n + £... £... £... i,J v;,J - i+I,J v1+1,J Yi+I,J A-. uvi,J 
n=l 1=l J=3 LlX1+I,j 

N-1/M-1 A n+l _ H;,)f.M s:r!n N /M-2 +I Hi+I, 2AM s:r!n 
+I I L; 2 u 2 Jixi 2 UV · 2 - I I Li+I,2Au;+l,2 )Jixi+l,2 UY · 2 

n=l i=2 ' 
1

' ' M '· n=2 i=l M 1
' 

i,2 i+l,2 
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N-1/M-1 

+I. I. 
n=l i=2 

1 n+l 2H,.,2AM s:n n N-1/M-1 M 1 n+l A.. 2H,.,2AM s:rT"n 
M 3/L . 3 dx 2 UY. 3- L L . 3/L 3 L.U,. 2 UY. 2 I, VI, I, A I, I, Vi, I, A I, uy n=l i=2 uv 

i,2 :.r i,2 

N-l/M-1./M-l I((H .+H ,.)uu.+(H ,.+H 2 .)v~~, .+] + L. .A n+l - L. .A n+l /),. . . - I,J 1- ,J I,J ,_ ,J ,_ ,J 1- ,J /iU" 
~I ~ ~2 ( 1-l,j "i-l,j I,J u;,j ) Yl-1,) {8 (U~'. + u~~l . )(H . + H_, . ) i,j 

1,) I ,) 1,) I ,) 

N-l/M-2JM-l I ((H I.+ H )U~' I . + l + . . A, n+l _ L. .A, n+l /),. .. _ I+ ,) i,J I+ ,) /iU~'. ~ ~ ~ (L,.,, "i,J ,.,,, ,,..,) Y,,, {8 (H + H .)U". + (U" . + U".)(H . + H .) '·' 
Il-l 1-2 ;-2 1,) t-1.} 1,) 1+1,; 1,) 1,) 1-l,j 

N JM-IJM-l I 
+ L L L (L.. ,A- Ml - L A n+l)llx . -[(H +H. ,)V" +(HI +HI. ,)V\ .]/iU.". 

n::;l i=l j=-
3 

1,)- Ut,;-1 1,) Ut,) 1,) 8 I,J 1,)- t,) t- ,) 1_ ,)- t- ,) I,] 

N /M-IJM-2 I 
+ L L L (L,.,JAu~.~~- L,.,J+l.A,u~.~~~ )llx,.,J+l -8 [(Hi,J+l + H,.)V/J+l + (Hi-l.J+l + Hi-l,)V,.~l.J+l]liV,.~J 

n=2 i=2 }=2 

N IM JM-l L A n+l ARU + 1 A n+lARU I 
~ ~ ~ i-l,j u;-t,j i-l.j "--'i,j Ui,j i.j rr n n 

+ £... £... £... 4 Hi-l./V;-l,J+l + V;_,,;) 4Ax Ay. (Ax,._,,,..,- Ax,._,,,._,)t5U;,; 
n=2 •=3 J=2 •-I,J 1-l,j 

N IM-IJM-l L,,;Au;,~l ARU;,; + L,+l,jAU;:ll.jARU;+l,j n n I n 

+ L L L 4 H;,/V;,J+l + Y;,;) 4A A (Ax,.,,..,- Axi.J-l)t5U,.,; 
-~•N ~ ~ 

N-l /M-IJM-1 v" . + v.·. 
~ ~ ~<M A,··' M A-".')fl- ·-'·' '·l(H H )ou" + £,., £,., £,., i-l,j Vi-l,j - i,j Vi,} Y;,j 8 i,j + i-l,j i,j 
11=1 i=2 )=3 

N-1 /M-lJM-2 v.· . + V"-
~ ~ ~ ( M A, n+l M A, n+l )fl- •-l.j+l ,,J+I (H H )ou" + £i ~ £. i-1.)+1 Vi-l,j+l - i,j+l Vi,j+I Yi,j+l 8 i,j + i-l,j i,j 
11=1 i=2 }=2 

N-l/MJM-l M I A,··,' ARV I.+ M I. ,A. ··,1 . IARV I. I I - L L L I-.} ,.,_ .} ,_ .J ,_ ,]+ VI-,}+ ,_ ,)+ H (U" + U" ) (Ax -Ax. )OU" 
n=l •=J J=J 4 •-I,J I,J •-l.J 4Ax ~V. . •-I,J+I 1-I,J-I 1,J 

1-l,) C.' 1-l,) 

N IM-IJM-l M A~ ARV · + M · 1A 11 

1ARV · 1 ) 
-I I I '·l "·' '·' '·l• "·I• •. ,. H . . cu•-l_ + uH) (Ax. . -Ax . )m~. 

n=2 i=2 i=3 4 '·' •+I,J '·1 4Ax. ~v . ,,J+I I,J-1 I,J 
1,} :J 1,) 

N-l/M JM-1 n+l ARV,_1 j n 
+ :E :E :E M I .A.. I . ' Fr,. I .H. I .&I . 

n;::} i=J )=3 t- .j VI- ,) 4 1- ,) 1- ,) 1,) 

N-1/M-1 JM-1 n+l ARV,.,j n 
+ :E L. :E M. A. .. --F'r, . .H &I. 

n=l i=:2 )=3 I,J Vt,J 4 r,J I,J I,J 

N /MJM-2 M A n+l ARV,-I,j+l F. .H. 8lJ". 
+ :E .:E :E i-1,}+1 vi-l,j+l 

4 
61-I,J 1-l,] I,J 

n=2•=3 J=2 

N-1/M-IJM-2 1 n+l ARV,.,j+l s:rrn 
+ :E :E :E M . 1/l. . I F'r, .H uu .. 

n=J i=2 j=2 1,)+ Vt,j+ 4 I,J 1,) 1,) 

N /M-1 I 
-L L L;,2Au~;lflii,2 g[(H;,2 +Hi,! )Vi; +(Hi-1,2 + H;-1,1)Vi~l,2]0Ut2 

n=2 i=2 
N /M-1 I 

-L L L;,2Au~;J fli;,2 g [(H;,2 +Hi,! )V,.; + (H;-1,2 + H;-1,1 )V;~1,2 ]OUt1 
n=2 i=2 
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N /M-1 M A 11 
ARV _I. I. 1-1.1 Vl-1,3 1-1.1 H (U~~-~ + u~~-~ ) <& _ & )t5U" 

n=2 i=
3 

4 1-1,2 1.2 1-1.2 
4
&. .Ll 1-1,1 1-1,1 1,2 

1-1.1 Y1-1. 1 

NIM-IM.3A"3ARV3 I I 1 -I. I. I, VI, I, H (U~I- +U"-) (& -& )t5U" 
11=2 i=2 4 1,2 1+1,2 1,2 4&. Ll . 1,3 1,1 1,2 

1,2 Y1.2 

N-1/M-IJM-1 n+l n+l U.". +U~'·-1 
+I. I. I. (L. . lA .. I- L. A . . )ill . I,) I,) (H . + H . I )bY." 

"=! j;:2 j:J l.j- Ul.j- 1,) U/,j 1,) 8 I,J 1,]- 1,) 

U" +U" l ri2 J'tl ( L A 11+1 L A n+l )ill i+l.i i+I,J-1 ( H . + H . )8\1 ". + . . i+l,j-1 ui+l,j-1 - i+l,j ui+l,j i+l,j S t,J I,J-1 t,J 
n==2 1=l J=3 

-I /II~ Li,Jj"u;.:~IARUi,j-1 + Li+l,j-l).u;~l.j-IARUi+l,j-1 H - (V". + V"- ) 1 (d . - - d . - )b'\1.". 
n=Z i=Z i=l 4 1,} I 1,} 1,} I 4& .. A . . :YI+I,J 1 :Y1-I,j 1 1,J 

1,)-1 :YI,j-1 

N /M-1 JM-1 L A HI ARU. · + L 11A n+ll .ARU lj 1 -I. I. L 1,) UI,J 1,} I+. Ul+ .} I+. H . . (V". + V".) (A . -A . . )bY.". 
n=z i=Z i=2 4 '·I I,J+I 1,1 4&. Ay. . Y1+1.1 Y~-1.1 I,J 

1,} /,) 

+ N£/I-Ilt\M Ayn+l_ M . ). ~~I )&. {_!.((Hi,j+l + H,,j)V/j+l +(Hi,j + Hi,j-I)V,~i +)}b'\1." 
n=l i=2 i=J 1.) '·1 l,j+l vt,j+l 1,) 8 (V.". + V.". )(H .. +H. . ) I,J 

1,)+1 1,) !,) l,j-1 

N-1/M-2 JM 1 ((H. +H. · JV" + ) +I. I. I.(M. A. ~+I _ M. ~+1)& .. {- 1,1 1,1- 1,1 }bV." 
n=l i=2 j=4 t,J-1 Vt,J-1 t,JAvi,J t,J-1 8 (H H )V" (V" V" )(H H ) t,} 

i,j-1 + i,j-1 i,j-1 + i,j + i,j-1 i,j + i,j-1 

N-1/M-llM-1 n+l n+l _ 1 ( 11 n ) n 
+I. I. I. (M. 1 A.

1
.-M.A., .. )Lly -(H.+H 1 .)U.+(H. 1 +H 1 . 1)U .. 1 8V. 

n=l i=
2 

j=J 1- ,) Vt- ,) 1,) 1,} 1,) 8 I,J 1- ,} 1,) 1,)- 1- ,)- t,)- t,) 

N-IIM-1 JM M .. 1 1 ~~~ 1 1ARV. I+ M .A. ~1+ 1 ARV . 1 
+I. I. r •.J- ""'·}- 1.)- '·i "·I '·1 H. . (U" . + u~~. ) (A . . - il . . )bY .... 

n=l i=2 i=4 4 I,J-1 t+I,J-1 I,J-1 4& .. A . . Y 1+1,J-1 Yt-l,j-1 1,1 
1, 1-1 Y •. 1-1 

N-1/M-1 JM M . 1 ~+I ARV . + M . lA. ~~~ 1 1ARV I I 1 +I. I. L I,J"'vt,) 1,) 1,)+ VI,)+ 1,+ H .. (U" .+U".) (A .. -A .. )bY" 
•=I •=2 J=J 4 '·i I+I,J 1.1 4& .. A . . Y,+I,J Y.-I.J '·i 

,,1 Y,, 1 

N-1/M-1 JM L. . 
1
A n+l

1
ARU . 

1 - 2, 2, 2, 1,)- Ul,)- 1,]- F. . H . t5V" 
n=l 1=2 j=3 4 6t,J-l I,J-1 I,J 

N-1/M-1 JM-1 
-2, 2, 2, 

L. It "+1ARU . 
1,) Ul,) 1,) F .. H .. t5V". 

4 6t,) 1,] I,J 
n=l 1=2 j=2 

N-1/M-2 JM L. 1 · 1A n+ll. 
1
ARU 1 · 1 L L I+,)- Ut+ ,)- t+ ,)- F H bY" 

- 2. 4 61.j-l I.J-i 1.1 
n=l i=l j=3 

N-1/M-1 JM-1 

-2. 2. 2. 
n=l 1=2 }=2 

L. I A n+ll ARU I . 
I+ ,J Ill+,) t+ ,) F .. H .. t5V". 

4 6t,) I,J I,J 

N-1/M-i 
- 2, 2, 

n=l 1=2 
L 1n+IA= U1"2+UI~l(H H )s:un 

. 2/1, . 2 L.lA.. 2 , ,. 2 + . I UV • 2 
l, Ul, l, 8 , l, I, 

N IM-2 

-2. :2. 
n=2 1=1 

U" +U" L It n+l Ax 1+1.2 1+1.1 (H + H )£5\1" 
1+1,2 Ul+1,2 1+1,2 8 1,2 I,J 1,2 
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[ 

H )V
II (H + H )V." +l N-IIM-1 , 1 (Hi,3 + i,2 ;,3 + i,2 1,1 1,2 ~/" 

~ ~ M A. 11+l)~x _ 1,2 
- £.. £.. i,3 Vi,3 i,2 8 (V" + V" )(H + H ) 

11=1 i=2 i,3 1,2 1,2 l,l 

N-1/M-2 1 (<Hi.2 + Hi.lwi; + J~l" 
- ~ ~ M;,3A.v~;~)~xi.2 g (Hi,3 + Hi.2 )Y/~ + (V;~ + V/~ )(H;,3 + H;.z) 1,3 
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APPENDIX C. COEFFICIENTS OF F-u, Fv, Fu, Fv 

2H AM 2Hi-l,jAM 

F-u = (L;,JAu:·.~'- Li+t,JAu;~/)AY;,J A·; - (L;-t,JA,.;~i.i- Li,jA,.:·.~')AY;-t,J 
•.J Axi-1.1 

(L 
~ n+l L ~ n+l)'- Jf;,jAM (L ~ n+l L A 11+l A- J{,j+IAM 

- ij-l/l..u··-1- ij/l..u .. uX;j •- + ij/l..u .. - i}+l ,. .. ,)uxij+l -, '·I , I,J , uyi,J , I,J , I,J+ , Ayi,J+l 

(C.l) 

H .AM H ,AM 
M ~ n+l M A n+l )A- 1,) ( M A n+t M A n+l )A- 1,)+ 

- ( i-l,j/I..Vi-1,} - i,j v;,j Yi,j Ay-. . + i-l.j+l Vi-l,j+l - i,j+l v1,J+l YI,J+l A 
1,1 Y1,1+t 

H AM HI AM 
F- = -(L J n+l - L A n+l)Ax _I,_J -+ (L A n+l - L. .A. 11+1 )Ax. . I+,} 

v r,J-1'~ 1 ,1 -t '·1 u1, 1 '·1 fl- r+l,J-1 u 1+1,j-1 r+l,J lti+l,j t+l,J /1X. . 
xi,J l+l,J 

2H. ,AM 2H AM 
-(M .. A. n+t - M .. A. "+ 1)Ax . I,}- + (M. A. n+t- M .. A. n+l )Ax I,) 

I,J-1 Vj,j-1 1,) Vi,j l,j-) 11 1,) Vj,j 1,)+1 VJ,j+l 1,) fl. 
Y;,J-1 Y1, 1 

(C.2) 

H AM Hi+l,j'AM 
(M ~ n+t M ~ II+')•- 1.1 (M A. n+l M ~ 11+t )A-

- ·-lj/Lv.,.- ij/Lv .. uy;j--;-=--+ ij v .. - i+lj/l..v·t· Yi+lj A 
I • r- ,) • 1,) ' LlXi,j • 1,) ' I+,) • xi+l.j 

l[
(H .. +H. I .)U~. +(H. I.+ H. 2 .)U"I. +] _ 1 n+l 1 n+l _ I,J 1- ,J I,J 1- ,J 1- .J 1- ,J 

F - L. ./1,. - L. ./1,. ll . . u ( 1-l,j Ui-1,} 1,] u;,j ) Yl-l,j {8 (U.n + un . )(H .. + H. . ) 
1,] 1-l,j 1,] 1-l,j 

l[(H;+IJ + H; 1)u;:IJ + l + L. A n+l _ L. .A n+l fj. .. _ ' ' ' 
( 1,] Ui,j 1+1,] Ui+l) YI,J{S (H .. tH . . )U".+(Un .+U".)(H..tH .. ) 

. 1,] 1-l,j 1,] 1+1,] 1,] 1,) 1-l,j 

(C.3) 

+(L, . . 
1
A ll+ll- L .A n+l )LlX. ![(H +H. · 1 )V.n +(H. 1 · + H 1 · 1 )V."I ·] 

,)- UI,J- 1,] Ul,) 1,) 8 I,J 1,)- 1,) 1- ,) 1- ,]- 1- ,] 

L 1 .A n+1
1
.ARU 1 · + L .A 11 ~ 1 ARU. · 1 + 1- ,) Ul- ,} 1- ,) 1,) UI,J 1,} H. .(V-" . + V-" . ) (Ax. . -Ax. ) 

4 1-l,J 1-l,j+l 1-l,j 4Ax. -~ . . 1-l,j+l 1-l,j-1 
1-1.1 Y1-1.; 

L
1
A n+IARU .. +L 

1 
A 11

+
1

1 
ARU 

1 
· 1 + I, Ill,) 1,) I+,) Ul+ ,) I+,) H .. (V.". + vn) (Ax . -Ax . ) 

' 4 1,) l.j+l 1,} 4Ax. -~ . . l,j+l 1,)-1 
1, 1 Y1. 1 

V.",. + V" 
(M A n+t M A n+')A- ~- .} 1,) (H H ) + i-l,j Vi-1.} - i,j Vi,j Y;,j 8 i,j + i-1,} 

V",. I+ V" I 
1 n+l M A n+l ) A- 1

- ,J+ I,J+ (H H ) + ( Mi-l,J+l /Lvi-l,j+l - i,J+l v;,J+l uYi,J+l 8 i,J + i-l,J 
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n+l M 1 n+l ARV 1 & ) 
M I A. I .ARV,_I j + i I,J+I"h l,j+l 1-1,}+1 H .(U" + U" I ) (&i-1,}+1- i-1.}-1 

I ,) VI ,) • i-I,J 1,) 1- ,) 4& Ay. . 
4 . i-1,) 1-l,J 

ARV ARV, 1• 1 I-1.J+1 M . 1 n+1 · F H M 1 n+1 F61·-1,J.Hi-1,J. + i.J+1/l,v;,J·+1 4 6i,j i,j + i-1,}+1,11,\'i-1,}+1 4 

U". + UtH 
F - (L A n+1 - L .A n+1)~x. . •.J . (H,,J + H,,J-1) 

V - i,j-.1 Uj,j-1 1,) Uf,) I,) 8 

u,:1.j + u,:l,j-1 (H .. + H . . ) 1 n+1 - L A n+1 )~X . 1 +(Li+1,j-1/l,Ui+1,j-1 i+1,j Ui+1,j •+1,) 8 I,J l,j-

L1 • 1_ 1 Au~.~~ 1ARU1 , 1 1 + LI+1.J-1A.;~
1

.J-1 AR Ul+l,J-1 H (V" + V" ) 1 (Ay,+1 1-1- Ay,-1.1-1) 

4 I,J-1 i,J I,J-1 4L\xi,J-1~Yi,J-1 . 

L1 • 1 A.;:~
1

ARU1 , 1 + L,.1,)Au;:/JARUI+1,) H (V" + V") l (Ay,+
1
.
1

- Ay,-1.1) 

4 1,1 1,)+1 1.1 4&,,JAy,,J 

1 ((H1•1+ 1 + H,,1 )V/1+1 + (H,,1 + H,,1-1 )V;~J +) 
n+1- A •+1 ax .. -

+(M,,1Av1,1 Mi,j+1 vi,j+1) 1•18 (V" +V".)(H.+H_) 
i,j+l 1,) 1,) 1,) 1 

1 ((H,,J + H,,J-1 )V/J + ) 11+1 M n+1 ax -
+ ( M,,J-1Av,,J-1 - ;,JAv;,J ) 1.1-1 8 ( H + H . )V". 

1 
+ (V". + V/

1
_

1 
)( H, 1 + H,,J-1) 

i,j-1 /,j-2 I,J- I,.J , • 

(C.4) 

+( M A "+
1 

_ M A "+
1
. )L\y 1 . _!_ (C H,+1.1 + H,,1 )U,:1.1 + ( H,+1.i-1 + H,.1-1 )U,:1.j-1) 

1,) VI,) l+l,j Vl+l,j I+,) 8 

+(M ;t ••
1 

- M .A ~+1 
)L\y . _!_(CH, j + H,_l,j )U,:j +(H,,j-1 + H,-1.1-1 )U,:,-1) i-1,j Vi-1,j 1,) VJ,) I,) 8 ' 

M A n+

1 

ARV + MI,JAv~:
1

ARV,,J H (U" +U" _
1

) 
1 (~yi.+1. 1·-1-~Y;-1,1-1) + i,j 1 Vi,} 1 i,j-1 1 A 

4 I,J-1 1+1,J- I,J 4L\xi,J-1'-"Y;,J-1 

•+1 M A n+1 ARV 1 ) 
M, jAv; j ARv;,J + i,J+1 Vi,j+1 i,J+1 H (U" . + u." ) (~yi+1 1 - ~Yi-1,} + . . i,j 1+1,] 1,) 4& .~y. . 

4 1,] 1,} 

n+
1 L .A "+1ARU,. L -1/t. -1ARUi,j'-1 F H 1,) UJ,) ,] F H . . 

1,) Ul,) - 6. . I ) 
6i,j-1 i,j-1 4 I,) • 4 
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